以下是agaricus样本数据的示例:
import xgboost as xgbfrom sklearn.datasets import load_svmlight_filesX_train, y_train, X_test, y_test = load_svmlight_files(('agaricus.txt.train', 'agaricus.txt.test'))clf = xgb.XGBClassifier()param = clf.get_xgb_params()clf.fit(X_train, y_train)preds_sk = clf.predict_proba(X_test)dtrain = xgb.DMatrix(X_train, label=y_train)dtest = xgb.DMatrix(X_test)bst = xgb.train(param, dtrain)preds = bst.predict(dtest)print preds_skprint preds
结果如下:
[[ 9.98860419e-01 1.13956432e-03] [ 2.97790766e-03 9.97022092e-01] [ 9.98816252e-01 1.18372787e-03] ..., [ 1.95205212e-04 9.99804795e-01] [ 9.98845220e-01 1.15479471e-03] [ 5.69522381e-04 9.99430478e-01]][ 0.21558253 0.7351886 0.21558253 ..., 0.81527805 0.18158565 0.81527805]
为什么结果会不同?似乎所有默认参数值都是相同的。我的意思不是predict_proba返回[prob, 1- prob]
的情况。
xgboost v0.6, scikit-learn v0.18.1, python 2.7.12
回答:
你需要直接将num_boost_round参数传递给xgb.train:
bst = xgb.train(param, dtrain,num_boost_round=param['n_estimators'])
因为否则它会忽略param[‘n_estimators’],并使用默认的估计器数量,xgb.train接口当前的默认值为10,而n_estimators的默认值为100。