我有一个包含165个样本和49个特征的数据集,目标值为1和0。这个数据集有缺失值,所以我尝试使用KNNimputer结合五折交叉验证来处理。以下是代码:
from numpy import meanfrom numpy import stdfrom pandas import read_csvfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.impute import SimpleImputerfrom sklearn.impute import KNNImputerfrom sklearn.model_selection import cross_val_scorefrom sklearn.model_selection import RepeatedStratifiedKFoldfrom sklearn.pipeline import Pipelinefrom pandas import read_csvimputer = KNNImputer(n_neighbors=5, weights='uniform', metric='nan_euclidean')df=read_csv('data.csv', header=None,na_values='?')data=df.valuesix = [i for i in range(data.shape[1]) if i != 49]X, y = data[:, ix], data[:, 49]model = RandomForestClassifier()pipeline = Pipeline(steps=[('i', imputer), ('m', model)])cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=1, random_state=1)scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
但是这里的问题是我不需要得分。我希望在填补缺失值后获得数据集(五折或完整的),因为我需要在填补后使用五折数据进行特征选择,然后进行分类。那么如何获得填补后的数据集呢?
回答:
正如评论中讨论的,CV过程在这里实际上没有任何帮助。你真正需要的是:
- 拟合你的
KNNImputer
并用它来转换(填补)你的训练数据 - 使用这个已经拟合的填补器相应地转换你的未见数据
这样,你的训练和测试数据将共享一个共同的填补过程,因此无论你选择哪种特征选择方法,都可以实际应用于这两个数据集。
这里是使用虚拟数据的演示,改编自文档中的示例:
import numpy as npfrom sklearn.impute import KNNImputerX = [[1, 2, np.nan], [3, 4, 3], [np.nan, 6, 5], [8, 8, 7]] # dummy dataimputer = KNNImputer(n_neighbors=2)X_imp = imputer.fit_transform(X) # fit imputer & transform training dta in 1 stepX_imp# result:array([[1. , 2. , 4. ], [3. , 4. , 3. ], [5.5, 6. , 5. ], [8. , 8. , 7. ]])# new (unseen - test) data with missing values:# we DON'T fit the imputer againX_new = np.array([[7, 3, 4], [np.nan, 8, 7]])X_new_imp = imputer.transform(X_new) # use the imputer already fitted with the training dataX_new_imp# result:array([[7. , 3. , 4. ], [5.5, 8. , 7. ]])