我正在尝试重现这里看到的一个教程。
一切都运行得很完美,直到我将.fit
方法添加到我的训练集上。
这是我代码的一个样本:
# 训练部分train_dir = 'pdf/learning_set'dictionary = make_dic(train_dir)train_labels = np.zeros(20)train_labels[17:20] = 1train_matrix = extract_features(train_dir)model1 = MultinomialNB()model1.fit(train_matrix, train_labels)# 测试部分test_dir = 'pdf/testing_set'test_matrix = extract_features(test_dir)test_labels = np.zeros(8)test_labels[4:7] = 1result1 = model1.predict(test_matrix)print(confusion_matrix(test_labels, result1))
这是我的Traceback:
Traceback (most recent call last):File "ML.py", line 65, in <module>model1.fit(train_matrix, train_labels)File "/usr/local/lib/python3.6/site-packages/sklearn/naive_bayes.py", line 579, in fitX, y = check_X_y(X, y, 'csr')File "/usr/local/lib/python3.6/site-packages/sklearn/utils/validation.py", line 552, in check_X_ycheck_consistent_length(X, y)File "/usr/local/lib/python3.6/site-packages/sklearn/utils/validation.py", line 173, in check_consistent_length" samples: %r" % [int(l) for l in lengths])ValueError: Found input variables with inconsistent numbers of samples: [23, 20]
我想知道如何解决这个问题?我在Ubuntu 16.04上使用Python 3.6工作。
回答:
ValueError: Found input variables with inconsistent numbers of samples: [23, 20]
这意味着你有23个训练向量(train_matrix有23行),但只有20个训练标签(train_labels是一个包含20个值的数组)
将train_labels = np.zeros(20)
更改为train_labels = np.zeros(23)
,应该就可以解决问题了。