我需要使用Python的numpy库来实现随机梯度下降。为此,我得到了以下函数定义:
def compute_stoch_gradient(y, tx, w): """Compute a stochastic gradient for batch data."""def stochastic_gradient_descent( y, tx, initial_w, batch_size, max_epochs, gamma): """Stochastic gradient descent algorithm."""
我还得到了以下辅助函数:
def batch_iter(y, tx, batch_size, num_batches=1, shuffle=True): """ Generate a minibatch iterator for a dataset. Takes as input two iterables (here the output desired values 'y' and the input data 'tx') Outputs an iterator which gives mini-batches of `batch_size` matching elements from `y` and `tx`. Data can be randomly shuffled to avoid ordering in the original data messing with the randomness of the minibatches. Example of use : for minibatch_y, minibatch_tx in batch_iter(y, tx, 32): <DO-SOMETHING> """ data_size = len(y) if shuffle: shuffle_indices = np.random.permutation(np.arange(data_size)) shuffled_y = y[shuffle_indices] shuffled_tx = tx[shuffle_indices] else: shuffled_y = y shuffled_tx = tx for batch_num in range(num_batches): start_index = batch_num * batch_size end_index = min((batch_num + 1) * batch_size, data_size) if start_index != end_index: yield shuffled_y[start_index:end_index], shuffled_tx[start_index:end_index]
我实现了以下两个函数:
def compute_stoch_gradient(y, tx, w): """Compute a stochastic gradient for batch data.""" e = y - tx.dot(w) return (-1/y.shape[0])*tx.transpose().dot(e)def stochastic_gradient_descent(y, tx, initial_w, batch_size, max_epochs, gamma): """Stochastic gradient descent algorithm.""" ws = [initial_w] losses = [] w = initial_w for n_iter in range(max_epochs): for minibatch_y,minibatch_x in batch_iter(y,tx,batch_size): w = ws[n_iter] - gamma * compute_stoch_gradient(minibatch_y,minibatch_x,ws[n_iter]) ws.append(np.copy(w)) loss = y - tx.dot(w) losses.append(loss) return losses, ws
我不确定迭代是否应该在range(max_epochs)内进行,还是在更大的范围内进行。我之所以这么说,是因为我读到“每次我们遍历整个数据集”就是一个epoch。所以我认为一个epoch包含不止一次迭代…
回答:
在典型的实现中,批量大小为B的mini-batch梯度下降应该从数据集中随机选择B个数据点,并根据这个子集上计算的梯度来更新权重。这个过程本身将持续多次,直到收敛或达到某个阈值最大迭代次数。B=1的mini-batch就是SGD,有时可能会有些噪声。
除了上述评论外,你可能还想调整批量大小和学习率(步长),因为它们对随机和mini-batch梯度下降的收敛速度有重要影响。
以下图表显示了这两个参数对使用SGD
和逻辑回归
进行亚马逊产品评论数据集的情感分析时收敛速度的影响,这是一门由华盛顿大学开设的Coursera机器学习-分类课程中的一个作业: