在Google ML Engine的微调任务中,某些训练配置会导致NaN损失,从而引发错误。我希望能够忽略这些试验,并继续使用不同的参数进行微调。
我使用了NanTensorHook,并设置了fail_on_nan_loss=False ,在不进行并行试验时(maxParallelTrials: 1),它在ML Engine中运行良好,但在多个并行试验时(maxParallelTrials: 3)会失败。
之前有人遇到过这个错误吗?有什么解决方法吗?
这是我的配置文件:
trainingInput: scaleTier: CUSTOM masterType: standard workerType: standard parameterServerType: standard workerCount: 4 parameterServerCount: 1 hyperparameters: goal: MAXIMIZE maxTrials: 5 maxParallelTrials: 3 enableTrialEarlyStopping: False hyperparameterMetricTag: auc params: - parameterName: learning_rate type: DOUBLE minValue: 0.0001 maxValue: 0.01 scaleType: UNIT_LOG_SCALE - parameterName: optimizer type: CATEGORICAL categoricalValues: - Adam - Adagrad - Momentum - SGD - parameterName: batch_size type: DISCRETE discreteValues: - 128 - 256 - 512
这是我设置NanTensorHook的方式:
hook = tf.train.NanTensorHook(loss,fail_on_nan_loss=False)train_op = tf.contrib.layers.optimize_loss( loss=loss, global_step=tf.train.get_global_step(), learning_rate=lr, optimizer=optimizer)model_fn = tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=eval_metric_ops, train_op=train_op, training_hooks=[hook])
我收到的错误信息是:
Hyperparameter Tuning Trial #4 Failed before any other successful trials were completed. The failed trial had parameters: optimizer=SGD, batch_size=128, learning_rate=0.00075073617775056709, . The trial's ror message was: The replica worker 1 exited with a non-zero status of 1. Termination reason: Error. Traceback (most recent call last): [...] File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/estimator/training.py", line 421, in train_and_evaluate executor.run() File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/estimator/training.py", line 522, in run getattr(self, task_to_run)() File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/estimator/training.py", line 532, in run_worker return self._start_distributed_training() File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/estimator/training.py", line 715, in _start_distributed_training saving_listeners=saving_listeners) File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/estimator/estimator.py", line 352, in train loss = self._train_model(input_fn, hooks, saving_listeners) File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/estimator/estimator.py", line 891, in _train_model _, loss = mon_sess.run([estimator_spec.train_op, estimator_spec.loss]) File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/training/monitored_session.py", line 546, in run run_metadata=run_metadata) File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/training/monitored_session.py", line 1022, in run run_metadata=run_metadata) File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/training/monitored_session.py", line 1113, in run raise six.reraise(*original_exc_info) File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/training/monitored_session.py", line 1098, in run return self._sess.run(*args, **kwargs) File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/training/monitored_session.py", line 1178, in run run_metadata=run_metadata)) File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/training/basic_session_run_hooks.py", line 617, in after_run raise NanLossDuringTrainingError NanLossDuringTrainingError: NaN loss during training. The replica worker 3 exited with a non-zero status of 1. Termination reason: Error. Traceback (most recent call last): [...] File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/estimator/training.py", line 421, in train_and_evaluate executor.run() File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/estimator/training.py", line 522, in run getattr(self, task_to_run)() File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/estimator/training.py", line 532, in run_worker return self._start_distributed_training() File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/estimator/training.py", line 715, in _start_distributed_training saving_listeners=saving_listeners) File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/estimator/estimator.py", line 352, in train loss = self._train_model(input_fn, hooks, saving_listeners) File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/estimator/estimator.py", line 891, in _train_model _, loss = mon_sess.run([estimator_spec.train_op, estimator_spec.loss]) File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/training/monitored_session.py", line 546, in run run_metadata=run_metadata) File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/training/monitored_session.py", line 1022, in run run_metadata=run_metadata) File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/training/monitored_session.py", line 1113, in run raise six.reraise(*original_exc_info) File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/training/monitored_session.py", line 1098, in run return self._sess.run(*args, **kwargs) File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/training/monitored_session.py", line 1178, in run run_metadata=run_metadata)) File "/usr/local/lib/python2.7/dist- packages/tensorflow/python/training/basic_session_run_hooks.py", line 617, in after_run raise NanLossDuringTrainingError NanLossDuringTrainingError: NaN loss during training.
提前感谢大家!
回答:
超参数调优任务中的不同试验在运行时是隔离的。因此,一个试验中添加的钩子不会受到其他试验中其他钩子的影响。
我怀疑问题是由试验的特定超参数组合引起的。为了确认,我建议您使用失败试验的超参数值运行一个常规训练任务,看看错误是否会再次发生。
请您将项目编号和作业ID发送到[email protected]
,我们可以进行进一步的调查。