这段代码可以预测指定股票的当前日期之前的值,但不能预测训练数据集之外的日期。这段代码是我之前提问时使用的,所以我对它的理解还比较浅。我认为解决方案可能只是简单地更改一个变量来增加额外的时间,但我不知道应该调整哪个值。
import pandas as pdimport numpy as npimport yfinance as yfimport osimport matplotlib.pyplot as pltfrom IPython.display import displayfrom keras.models import Sequentialfrom keras.layers import LSTM, Densefrom sklearn.preprocessing import MinMaxScaleros.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'pd.options.mode.chained_assignment = None# 下载数据df = yf.download(tickers=['AAPL'], period='2y')# 分割数据train_data = df[['Close']].iloc[: - 200, :]valid_data = df[['Close']].iloc[- 200:, :]# 缩放数据scaler = MinMaxScaler(feature_range=(0, 1))scaler.fit(train_data)train_data = scaler.transform(train_data)valid_data = scaler.transform(valid_data)# 提取训练序列x_train, y_train = [], []for i in range(60, train_data.shape[0]): x_train.append(train_data[i - 60: i, 0]) y_train.append(train_data[i, 0])x_train = np.array(x_train)y_train = np.array(y_train)# 提取验证序列x_valid = []for i in range(60, valid_data.shape[0]): x_valid.append(valid_data[i - 60: i, 0])x_valid = np.array(x_valid)# 重塑序列x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], 1)x_valid = x_valid.reshape(x_valid.shape[0], x_valid.shape[1], 1)# 训练模型model = Sequential()model.add(LSTM(units=50, return_sequences=True, input_shape=x_train.shape[1:]))model.add(LSTM(units=50))model.add(Dense(1))model.compile(loss='mean_squared_error', optimizer='adam')model.fit(x_train, y_train, epochs=50, batch_size=128, verbose=1)# 生成模型预测y_pred = model.predict(x_valid)y_pred = scaler.inverse_transform(y_pred)y_pred = y_pred.flatten()# 绘制模型预测df.rename(columns={'Close': 'Actual'}, inplace=True)df['Predicted'] = np.nandf['Predicted'].iloc[- y_pred.shape[0]:] = y_preddf[['Actual', 'Predicted']].plot(title='AAPL')display(df)plt.show()
回答:
您可以训练模型来预测未来的序列(例如接下来的30天),而不是像目前这样预测下一个值(下一天)。
为此,您需要将输出定义为y[t: t + H]
(而不是像当前代码中的y[t]
),其中y
是时间序列,H
是预测期的长度(即您想要预测的天数)。您还需要将最后一层的输出数量设置为H
(而不是像当前代码中的1
)。
您仍然可以将输入定义为y[t - T: t]
,其中T
是回顾期的长度(或时间步数),因此模型的输入形状仍然是(T, 1)
。回顾期T
通常比预测期H
长(即T > H
),并且通常设置为H
的倍数(即T = m * H
,其中m > 1
是一个整数)。
import numpy as npimport pandas as pdimport yfinance as yfimport tensorflow as tffrom tensorflow.keras.layers import Dense, LSTMfrom tensorflow.keras.models import Sequentialfrom sklearn.preprocessing import MinMaxScalerpd.options.mode.chained_assignment = Nonetf.random.set_seed(0)# 下载数据df = yf.download(tickers=['AAPL'], period='1y')y = df['Close'].fillna(method='ffill')y = y.values.reshape(-1, 1)# 缩放数据scaler = MinMaxScaler(feature_range=(0, 1))scaler = scaler.fit(y)y = scaler.transform(y)# 生成输入和输出序列n_lookback = 60 # 输入序列的长度(回顾期)n_forecast = 30 # 输出序列的长度(预测期)X = []Y = []for i in range(n_lookback, len(y) - n_forecast + 1): X.append(y[i - n_lookback: i]) Y.append(y[i: i + n_forecast])X = np.array(X)Y = np.array(Y)# 拟合模型model = Sequential()model.add(LSTM(units=50, return_sequences=True, input_shape=(n_lookback, 1)))model.add(LSTM(units=50))model.add(Dense(n_forecast))model.compile(loss='mean_squared_error', optimizer='adam')model.fit(X, Y, epochs=100, batch_size=32, verbose=0)# 生成预测X_ = y[- n_lookback:] # 最后可用的输入序列X_ = X_.reshape(1, n_lookback, 1)Y_ = model.predict(X_).reshape(-1, 1)Y_ = scaler.inverse_transform(Y_)# 将结果组织成数据框df_past = df[['Close']].reset_index()df_past.rename(columns={'index': 'Date', 'Close': 'Actual'}, inplace=True)df_past['Date'] = pd.to_datetime(df_past['Date'])df_past['Forecast'] = np.nandf_past['Forecast'].iloc[-1] = df_past['Actual'].iloc[-1]df_future = pd.DataFrame(columns=['Date', 'Actual', 'Forecast'])df_future['Date'] = pd.date_range(start=df_past['Date'].iloc[-1] + pd.Timedelta(days=1), periods=n_forecast)df_future['Forecast'] = Y_.flatten()df_future['Actual'] = np.nanresults = df_past.append(df_future).set_index('Date')# 绘制结果results.plot(title='AAPL')
请参阅这个答案以了解不同的方法。