使用Keras .h5模型进行预测时出现错误?

我已经用图像数据集训练了一个CNN模型,并将模型保存为classifier.h5。现在,我需要加载这个模型来进行预测。我按照以下方式实现了代码,但遇到了一个错误 _maybe_load_initial_epoch_from_ckpt() takes 2 positional arguments but 3 were given。是什么导致了这个错误,如何解决它?

这是我的CNN模型。我将其保存为classifier.h5

EPOCHS = 60batch_size = 32iter_per_epoch = len(x_train)//batch_sizeval_per_epoch = len(x_test)//batch_sizeprint(len(x_train))print(len(x_test))classifier = Sequential()classifier.add(Conv2D(32, 3, activation='relu',                      padding='same', input_shape=(img_w, img_h, 3)))classifier.add(BatchNormalization())classifier.add(MaxPooling2D())classifier.add(Conv2D(32, 3, activation='relu',                      padding='same', kernel_initializer='he_uniform'))classifier.add(BatchNormalization())classifier.add(MaxPooling2D())classifier.add(Conv2D(64, 3, activation='relu',                      padding='same', kernel_initializer='he_uniform'))classifier.add(BatchNormalization())classifier.add(MaxPooling2D())classifier.add(Conv2D(64, 3, activation='relu',                      padding='same', kernel_initializer='he_uniform'))classifier.add(BatchNormalization())classifier.add(MaxPooling2D())classifier.add(Conv2D(128, 3, activation='relu',                      padding='same', kernel_initializer='he_uniform'))classifier.add(BatchNormalization())classifier.add(MaxPooling2D())classifier.add(Conv2D(128, 3, activation='relu',                      padding='same', kernel_initializer='he_uniform'))classifier.add(BatchNormalization())classifier.add(MaxPooling2D())classifier.add(Flatten())classifier.add(Dropout(0.5))classifier.add(Dense(128, activation='relu'))classifier.add(Dense(4, activation='softmax'))classifier.compile(loss='sparse_categorical_crossentropy',                   optimizer='adam', metrics=['accuracy'])classifier.summary()train_datagen = ImageDataGenerator(    rotation_range=25,    zoom_range=0.1,    width_shift_range=0.1,    height_shift_range=0.1,    shear_range=0.2,    horizontal_flip=True)val_datagen = ImageDataGenerator()train_gen = train_datagen.flow(x_train, y_train, batch_size=batch_size)val_gen = val_datagen.flow(x_test, y_test, batch_size=batch_size)m = classifier.fit_generator(    train_gen,    steps_per_epoch=iter_per_epoch,    epochs=EPOCHS,    validation_data=val_gen,    validation_steps=val_per_epoch,    verbose=1)

现在在另一个脚本中,我试图加载这个模型,但遇到了上述错误

from keras.models import load_modelfrom tensorflow import Graphimport tensorflow as tfimg_w, img_h = 256, 256gpuoptions = tf.compat.v1.GPUOptions(allow_growth=True)graph = Graph()with graph.as_default():    tf_session = tf.compat.v1.Session(        config=tf.compat.v1.ConfigProto(gpu_options=gpuoptions))    with tf_session.as_default():        model = load_model('classifier.h5')path = "./images/test/Leaf Blast/blast__0_2632.jpg"img = cv2.imread(path)test_image = cv2.resize(img, (int(img_w*1.5), int(img_h*1.5)))test_image = preprocess(test_image)test_image = edge_and_cut(test_image)test_image = np.array(test_image)test_image = np.expand_dims(test_image, axis=0)img_class = model.predict(test_image)print(img_class)

以下是我的完整错误追踪:

Traceback (most recent call last):  File "error.py", line 171, in <module>    img_class = model.predict(test_image)  File "C:\Users\namba\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\keras\engine\training_v1.py", line 983, in predict    return func.predict(  File "C:\Users\namba\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\keras\engine\training_arrays.py", line 708, in predict    return predict_loop(  File "C:\Users\namba\AppData\Local\Programs\Python\Python38\lib\site-packages\tensorflow\python\keras\engine\training_arrays.py", line 259, in model_iteration    initial_epoch = model._maybe_load_initial_epoch_from_ckpt(initial_epoch, mode)TypeError: _maybe_load_initial_epoch_from_ckpt() takes 2 positional arguments but 3 were given

回答:

我不知道是什么导致了这个错误。但是,以下更改解决了问题。我删除了Graph部分并加载了我的模型。现在它显示结果了。

class_dict = {'Bacterial leaf blight': 0,              'Brown spot': 1,              'Leaf Blast': 2,              'Leaf smut': 3              }class_names = list(class_dict.keys())img_w, img_h = 256, 256model = load_model('classifier.h5')path = "./images/test/Leaf Blast/blast__0_2632.jpg"img = cv2.imread(path)test_image = cv2.resize(img, (int(img_w*1.5), int(img_h*1.5)))test_image = preprocess(test_image)test_image = edge_and_cut(test_image)test_image = np.array(test_image)test_image = np.expand_dims(test_image, axis=0)img_class = model.predict(test_image)img_class = img_class.flatten()m = max(img_class)for index, item in enumerate(img_class):    if item == m:        pred_class = class_names[index]print(pred_class)

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注