使用keras训练VAE时遇到奇怪的错误

我在尝试使用人脸图像训练VAE时,在调用model.fit()方法后遇到了一个错误。我找不到解决这个问题的方案。

我得到的错误是:

ValueError: Cannot create an execution function which is comprised of elements from multiple graphs.

编码器:

    def build_encoder(self):        global K        K.clear_session()        conv_filters = [32, 64, 64, 64]        conv_kernel_size = [3, 3, 3, 3]        conv_strides = [2, 2, 2, 2]        n_layers = len(conv_filters)        x = self.encoder_input        for i in range(n_layers):            x = Conv2D(filters=conv_filters[i],                       kernel_size=conv_kernel_size[i],                       strides=conv_strides[i],                       padding='same',                       name='encoder_conv_' + str(i)                       )(x)            if self.use_batch_norm:                x = BatchNormalization()(x)            x = LeakyReLU()(x)            if self.use_dropout:                x = Dropout(rate=0.25)(x)        self.shape_before_flattening = K.int_shape(x)[1:]        x = Flatten()(x)        self.mean_layer = Dense(self.encoder_output_dim, name='mu')(x)        self.sd_layer = Dense(self.encoder_output_dim, name='log_var')(x)        def sampling(args):            mean_mu, log_var = args            epsilon = K.random_normal(shape=K.shape(mean_mu), mean=0., stddev=1.)            return mean_mu + K.exp(log_var / 2) * epsilon        encoder_output = Lambda(sampling, name='encoder_output')([self.mean_layer, self.sd_layer])        return Model(self.encoder_input, encoder_output, name="VAE_Encoder")

解码器:

    def build_decoder(self):        conv_filters = [64, 64, 32, 3]        conv_kernel_size = [3, 3, 3, 3]        conv_strides = [2, 2, 2, 2]        n_layers = len(conv_filters)        decoder_input = self.decoder_input        x = Dense(np.prod(self.shape_before_flattening))(decoder_input)        x = Reshape(self.shape_before_flattening)(x)        for i in range(n_layers):            x = Conv2DTranspose(filters=conv_filters[i],                                kernel_size=conv_kernel_size[i],                                strides=conv_strides[i],                                padding='same',                                name='decoder_conv_' + str(i)                                )(x)            if i < n_layers - 1:                x = LeakyReLU()(x)            else:                x = Activation('sigmoid')(x)        self.decoder_output = x        return Model(decoder_input, self.decoder_output, name="VAE_Decoder")

组合模型:

    def build_autoencoder(self):        self.encoder = self.build_encoder()        self.decoder = self.build_decoder()        self.autoencoder = Model(self.encoder_input, self.decoder(self.encoder(self.encoder_input)),                                 name="Variational_Auto_Encoder")        self.autoencoder.compile(optimizer=self.adam_optimizer, loss=self.total_loss,                                 metrics=[self.r_loss, self.kl_loss],                                 experimental_run_tf_function=False)        self.autoencoder.summary()        if os.path.exists(self.model_name + ".h5"):            self.autoencoder.load_weights(self.model_name + ".h5")  # 加载预训练权重        return self.autoencoder

训练过程:

    def train(self):        filenames = np.array(glob.glob(os.path.join(self.data_dir, '*/*.jpg')))        NUM_IMAGES = len(filenames)        print("图像总数 : " + str(NUM_IMAGES))        data_flow = ImageDataGenerator(rescale=1. / 255).flow_from_directory(self.data_dir,                                                                             target_size=self.input_shape[:2],                                                                             batch_size=self.batch_size,                                                                             shuffle=True,                                                                             class_mode='input',                                                                             subset='training'                                                                             )        self.autoencoder.fit_generator(data_flow,                                       shuffle=True,                                       epochs=self.epochs,                                       initial_epoch=0,                                       steps_per_epoch=NUM_IMAGES // self.batch_size                                       # callbacks=[self.checkpoint_callback]                                       )        self.autoencoder.save_weights(self.save_dir + self.model_name + ".h5")

我知道在这里提问可能不是最好的方式,但我真的不知道该如何解决这个问题,希望你能告诉我我做错了什么。☺


回答:

导致问题的代码行是:

K.clear_session()

移除它就解决了问题。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注