我正在尝试使用keras创建一个卷积网络,其中包括以下代码:
from keras.layers import Input, LSTM, concatenatefrom keras.models import Modelfrom keras.utils.vis_utils import model_to_dotfrom IPython.display import display, SVGinputs = Input(shape=(None, 4))filter_unit = LSTM(1)conv = concatenate([filter_unit(inputs[..., 0:2]), filter_unit(inputs[..., 2:4])])model = Model(inputs=inputs, outputs=conv)SVG(model_to_dot(model, show_shapes=True).create(prog='dot', format='svg'))
我尝试沿特征维度切片输入张量,以便将(人为缩小的)输入分成两部分,分别用于两个过滤单元。在这个例子中,过滤器是一个单一的LSTM单元。我希望能够用任意的模型替换LSTM单元。
然而,在model = ...
这一行上出现了错误:
---------------------------------------------------------------------------AttributeError Traceback (most recent call last)<ipython-input-6-a9f7f2ffbe17> in <module>() 9 conv = concatenate([filter_unit(inputs[..., 0:2]), 10 filter_unit(inputs[..., 2:4])])---> 11 model = Model(inputs=inputs, outputs=conv) 12 SVG(model_to_dot(model, show_shapes=True).create(prog='dot', format='svg'))~/.local/opt/anaconda3/envs/trafficprediction/lib/python3.6/site-packages/keras/legacy/interfaces.py in wrapper(*args, **kwargs) 86 warnings.warn('Update your `' + object_name + 87 '` call to the Keras 2 API: ' + signature, stacklevel=2)---> 88 return func(*args, **kwargs) 89 wrapper._legacy_support_signature = inspect.getargspec(func) 90 return wrapper~/.local/opt/anaconda3/envs/trafficprediction/lib/python3.6/site-packages/keras/engine/topology.py in __init__(self, inputs, outputs, name) 1703 nodes_in_progress = set() 1704 for x in self.outputs:-> 1705 build_map_of_graph(x, finished_nodes, nodes_in_progress) 1706 1707 for node in reversed(nodes_in_decreasing_depth):~/.local/opt/anaconda3/envs/trafficprediction/lib/python3.6/site-packages/keras/engine/topology.py in build_map_of_graph(tensor, finished_nodes, nodes_in_progress, layer, node_index, tensor_index) 1693 tensor_index = node.tensor_indices[i] 1694 build_map_of_graph(x, finished_nodes, nodes_in_progress,-> 1695 layer, node_index, tensor_index) 1696 1697 finished_nodes.add(node)~/.local/opt/anaconda3/envs/trafficprediction/lib/python3.6/site-packages/keras/engine/topology.py in build_map_of_graph(tensor, finished_nodes, nodes_in_progress, layer, node_index, tensor_index) 1693 tensor_index = node.tensor_indices[i] 1694 build_map_of_graph(x, finished_nodes, nodes_in_progress,-> 1695 layer, node_index, tensor_index) 1696 1697 finished_nodes.add(node)~/.local/opt/anaconda3/envs/trafficprediction/lib/python3.6/site-packages/keras/engine/topology.py in build_map_of_graph(tensor, finished_nodes, nodes_in_progress, layer, node_index, tensor_index) 1663 """ 1664 if not layer or node_index is None or tensor_index is None:-> 1665 layer, node_index, tensor_index = tensor._keras_history 1666 node = layer.inbound_nodes[node_index] 1667 AttributeError: 'Tensor' object has no attribute '_keras_history'
如果将LSTM
替换为Dense
,也会出现相同的问题。我不太明白这个错误信息的含义。我做错了什么?
关于相同错误有一个问题(链接如下),但我不清楚如何使用Lambda层,或者这是否是正确的解决方案。
AttributeError: ‘Tensor’ object has no attribute ‘_keras_history’
回答:
问题出在输入的切片方式上。LSTM层期望接收一个Layer
对象作为输入,而您提供的是一个Tensor
对象。您可以尝试添加一个lambda层(在这个例子中可能需要两个)来切片输入,以便为LSTM层提供输入。类似于:
y = Lambda(lambda x: x[:,0,:,:], output_shape=(1,) + input_shape[2:])(x)
然后这个y
层将作为后续层的(切片后的)输入。