我刚开始学习机器学习和Python。我想使用sklearn中的DecisionTreeClassifier。由于我的特征部分是数值型,部分是分类型,我需要对它们进行转换,因为DecisionTreeClassifier只接受数值型特征作为输入。为此,我使用了ColumnTransformer和管道。想法如下:
- 分类和数值特征在不同的管道中进行转换
- 两者结合形成分类器的输入
然而,使用我的测试数据的准确率总是0%,而我的训练数据的准确率约为85%。此外,调用cross_val_score()返回
ValueError: Found unknown categories ['Holand-Netherlands'] in column 7 during transform
这很奇怪,因为我用这些数据训练了full_pipeline。使用不同的分类器会导致相同的结果,这让我认为转换存在问题。非常感谢您的帮助!
以下是我的代码:
names = ["age", "workclass", "final-weight", "education", "education-num", "martial-status", "occupation", "relationship", "race", "sex", "capital-gain", "capial-loss", "hours-per-week", "native-country", "agrossincome"]categorical_features = ["workclass", "education", "martial-status", "occupation", "relationship", "race", "sex", "native-country"]numerical_features = ["age","final-weight", "education-num", "capital-gain", "capial-loss", "hours-per-week"] features = np.concatenate([categorical_features, numerical_features])# create pandas dataframe for adult datasetadult_train = pd.read_csv(filepath_or_buffer= "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data" , delimiter= ',', index_col = False, skipinitialspace = True, header = None, names = names )adult_test = pd.read_csv( filepath_or_buffer= "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test" , delimiter= ',', index_col = False, skipinitialspace = True, header = None, names = names )adult_test.drop(0, inplace =True)adult_test.reset_index(inplace = True)adult_train.replace(to_replace= "?", value = np.NaN, inplace = True)adult_test.replace(to_replace= "?", value = np.NaN, inplace= True)# split data into features and targetsx_train = adult_train[features]y_train = adult_train.agrossincomex_test = adult_test[features]y_test = adult_test.agrossincome# create pipeline for preprocessing + classifiercategorical_pipeline = Pipeline( steps = [ ( 'imputer', SimpleImputer(strategy='constant', fill_value='missing') ), ( 'encoding', OrdinalEncoder() ) ])numerical_pipeline = Pipeline( steps = [ ( 'imputer', SimpleImputer(strategy='median') ), ( 'std_scaler', StandardScaler( with_mean = False ) ) ])preprocessing = ColumnTransformer( transformers = [ ( 'categorical_pipeline', categorical_pipeline, categorical_features ), ( 'numerical_pipeline', numerical_pipeline, numerical_features ) ] )full_pipeline = Pipeline(steps= [ ('preprocessing', preprocessing), ('model', DecisionTreeClassifier(random_state= 0, max_depth = 5) ) ])full_pipeline.fit(x_train, y_train)print(full_pipeline.score(x_test, y_test))#print(cross_val_score(full_pipeline, x_train, y_train, cv=3).mean())
回答:
错误来自于y_test,它看起来像
而
删除末尾的’.’应该可以解决这个问题