我正在尝试创建一个问答AI,希望它在不需要自己训练模型的情况下尽可能准确。
我可以按照他们的文档,使用现有的基础模型创建一个简单的AI,如下所示:
from transformers import AlbertTokenizer, AlbertForQuestionAnsweringimport torchtokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')model = AlbertForQuestionAnswering.from_pretrained('albert-base-v2')question, text = "What does He like?", "He likes bears"inputs = tokenizer(question, text, return_tensors='pt')start_positions = torch.tensor([1])end_positions = torch.tensor([3])outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)loss = outputs.lossstart_scores = outputs.start_logitsend_scores = outputs.end_logitsanswer_start = torch.argmax(start_scores) # get the most likely beginning of answer with the argmax of the scoreanswer_end = torch.argmax(end_scores) + 1tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0][answer_start:answer_end]))
然而,这个模型的回答准确度不如其他模型。在HuggingFace网站上,我找到了一个我想使用的微调模型的例子
然而,指示显示了如何训练模型的示例。页面上的示例显然是有效的,因此已经存在预训练模型。
有谁知道我如何重用现有模型,这样我就不必从头开始训练一个模型吗?
回答:
原来我只需要在请求模型时获取一个额外的标识符:
from transformers import AlbertTokenizer, AlbertForQuestionAnsweringimport torchMODEL_PATH = 'ktrapeznikov/albert-xlarge-v2-squad-v2';tokenizer = AlbertTokenizer.from_pretrained(MODEL_PATH)model = AlbertForQuestionAnswering.from_pretrained(MODEL_PATH)
供将来参考,这些信息可以从transformers的使用按钮中获取。如下图所示。