我想使用GridSearchCV来进行参数调优。GridSearchCV是否也可以用来检查CountVectorizer还是TfidfVectorizer的效果更好?我的想法是:
pipeline = Pipeline([ ('vect', TfidfVectorizer()), ('clf', SGDClassifier()),])parameters = {'vect__max_df': (0.5, 0.75, 1.0),'vect__max_features': (None, 5000, 10000, 50000),'vect__ngram_range': ((1, 1), (1, 2), (1,3), 'tfidf__use_idf': (True, False),'tfidf__norm': ('l1', 'l2', None),'clf__max_iter': (20,),'clf__alpha': (0.00001, 0.000001),'clf__penalty': ('l2', 'elasticnet'),'clf__max_iter': (10, 50, 80),}grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1, cv=5)
我的想法是:CountVectorizer相当于设置了use_idf=False和normalize=None的TfidfVectorizer。如果GridSearchCV给出的最佳结果是这些参数,那么CountVectorizer就是最佳选择。这对吗?
提前感谢您
回答:
一旦你在Pipeline
中包含了具有相应名称的步骤,你就可以从参数网格中访问它,并添加其他参数,或者在这种情况下是向量化器。你也可以在一个pipeline中包含多个参数网格列表:
from sklearn.feature_extraction.text import CountVectorizerpipeline = Pipeline([ ('vect', TfidfVectorizer()), ('clf', SGDClassifier()),])parameters = [{ 'vect__max_df': (0.5, 0.75, 1.0), 'vect__max_features': (None, 5000, 10000, 50000), 'vect__ngram_range': ((1, 1), (1, 2), (1,3),) 'tfidf__use_idf': (True, False), 'tfidf__norm': ('l1', 'l2', None), 'clf__max_iter': (20,), 'clf__alpha': (0.00001, 0.000001), 'clf__penalty': ('l2', 'elasticnet'), 'clf__max_iter': (10, 50, 80)},{ 'vect': (CountVectorizer(),) # count_vect_params... 'clf__max_iter': (20,), 'clf__alpha': (0.00001, 0.000001), 'clf__penalty': ('l2', 'elasticnet'), 'clf__max_iter': (10, 50, 80)}]grid_search = GridSearchCV(pipeline, parameters)