使用给定数据集实现深度学习架构

我在caffe和深度学习方面还是个新手。我正在尝试实现深度学习架构。Architecture

这是我尝试实现的架构。该架构和Parse27k数据集由亚琛工业大学视觉计算研究所的计算机视觉小组创建和构建。

下面你可以看到我需要改进的模型:

Train_val.prototxt

name: "Parse27"layer {  name: "data"  type: "HDF5Data"  top: "crops"  top: "labels"  include {    phase: TRAIN  }  hdf5_data_param {    source: "/home/nail/caffe/caffe/examples/hdf5_classification/data/train.txt"    batch_size: 256  }}layer {  name: "data"  type: "HDF5Data"  top: "crops"  top: "labels"  include {    phase: TEST  }  hdf5_data_param {    source: "/home/nail/caffe/caffe/examples/hdf5_classification/data/test.txt"    batch_size: 256  }}layer {  name: "conv1"  type: "Convolution"  bottom: "crops"  top: "conv1"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  convolution_param {    num_output: 96    kernel_size: 11    stride: 4    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 0    }  }}layer {  name: "relu1"  type: "ReLU"  bottom: "conv1"  top: "conv1"}layer {  name: "pool1"  type: "Pooling"  bottom: "conv1"  top: "pool1"  pooling_param {    pool: MAX    kernel_size: 3    stride: 2  }}layer {  name: "norm1"  type: "LRN"  bottom: "pool1"  top: "norm1"  lrn_param {    local_size: 5    alpha: 0.0001    beta: 0.75  }}layer {  name: "conv2"  type: "Convolution"  bottom: "norm1"  top: "conv2"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  convolution_param {    num_output: 256    pad: 2    kernel_size: 5    group: 2    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 1    }  }}layer {  name: "relu2"  type: "ReLU"  bottom: "conv2"  top: "conv2"}layer {  name: "pool2"  type: "Pooling"  bottom: "conv2"  top: "pool2"  pooling_param {    pool: MAX    kernel_size: 3    stride: 2  }}layer {  name: "norm2"  type: "LRN"  bottom: "pool2"  top: "norm2"  lrn_param {    local_size: 5    alpha: 0.0001    beta: 0.75  }}layer {  name: "conv3"  type: "Convolution"  bottom: "norm2"  top: "conv3"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  convolution_param {    num_output: 384    pad: 1    kernel_size: 3    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 0    }  }}layer {  name: "relu3"  type: "ReLU"  bottom: "conv3"  top: "conv3"}layer {  name: "conv4"  type: "Convolution"  bottom: "conv3"  top: "conv4"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  convolution_param {    num_output: 384    pad: 1    kernel_size: 3    group: 2    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 1    }  }}layer {  name: "relu4"  type: "ReLU"  bottom: "conv4"  top: "conv4"}layer {  name: "conv5"  type: "Convolution"  bottom: "conv4"  top: "conv5"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  convolution_param {    num_output: 256    pad: 1    kernel_size: 3    group: 2    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 1    }  }}layer {  name: "relu5"  type: "ReLU"  bottom: "conv5"  top: "conv5"}layer {  name: "pool5"  type: "Pooling"  bottom: "conv5"  top: "pool5"  pooling_param {    pool: MAX    kernel_size: 3    stride: 2  }}layer {  name: "fc6"  type: "InnerProduct"  bottom: "pool5"  top: "fc6"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  inner_product_param {    num_output: 4096    weight_filler {      type: "gaussian"      std: 0.005    }    bias_filler {      type: "constant"      value: 1    }  }}layer {  name: "relu6"  type: "ReLU"  bottom: "fc6"  top: "fc6"}layer {  name: "drop6"  type: "Dropout"  bottom: "fc6"  top: "fc6"  dropout_param {    dropout_ratio: 0.5  }}layer {  name: "fc7"  type: "InnerProduct"  bottom: "fc6"  top: "fc7"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  inner_product_param {    num_output: 4096    weight_filler {      type: "gaussian"      std: 0.005    }    bias_filler {      type: "constant"      value: 1    }  }}layer {  name: "relu7"  type: "ReLU"  bottom: "fc7"  top: "fc7"}layer {  name: "drop7"  type: "Dropout"  bottom: "fc7"  top: "fc7"  dropout_param {    dropout_ratio: 0.5  }}layer {  name: "fc8"  type: "InnerProduct"  bottom: "fc7"  top: "fc8"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  inner_product_param {    num_output: 1000    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 0    }  }}layer {  name: "accuracy"  type: "Accuracy"  bottom: "fc8"  bottom: "labels"  top: "accuracy"  include {    phase: TEST  }}layer {  name: "loss"  type: "SoftmaxWithLoss"  bottom: "fc8"  bottom: "labels"    top: "loss"}

Solver.prototxt

net: "models/Parse27/train_val.prototxt"test_iter: 1000test_interval: 1000base_lr: 0.01lr_policy: "step"gamma: 0.1stepsize: 100000display: 20max_iter: 450000momentum: 0.9weight_decay: 0.0005snapshot: 10000snapshot_prefix: "models/Parse27/Parse27_train"solver_mode: GPU

我在实现这个架构时遇到了两个主要困难。

  1. 如上所述,我的模型不包括自定义损失层。我的模型几乎是caffeNet架构。但我应该用自定义损失层(绿色框)替换最后一个层(红色框内)。

  2. 我的训练数据集具有以下结构。

crops       Dataset {27482, 3, 128, 192}labels      Dataset {27482, 12}mean        Dataset {3, 128, 192}pids        Dataset {27482}

如上所示,crops和labels中的行数(示例)相同,为27482。然而,我的标签数据集有12列。而我的模型在只有一个标签时可以工作。我如何让它训练所有标签?

我的Train_val.prototxt中的模型目前看起来像这样:

enter image description here

任何帮助或建议将不胜感激。


回答:

Related Posts

Keras Dense层输入未被展平

这是我的测试代码: from keras import…

无法将分类变量输入随机森林

我有10个分类变量和3个数值变量。我在分割后直接将它们…

如何在Keras中对每个输出应用Sigmoid函数?

这是我代码的一部分。 model = Sequenti…

如何选择类概率的最佳阈值?

我的神经网络输出是一个用于多标签分类的预测类概率表: …

在Keras中使用深度学习得到不同的结果

我按照一个教程使用Keras中的深度神经网络进行文本分…

‘MatMul’操作的输入’b’类型为float32,与参数’a’的类型float64不匹配

我写了一个简单的TensorFlow代码,但不断遇到T…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注