我有一个小的、不平衡的数据集,我想用不同的算法来测试它。为了评估的目的,我需要多个性能指标(准确率、精确率、召回率、F分数、支持度)。
这是我计划的做法,但我并不完全满意,因为可能有更简单的解决方案:
skf = StratifiedKFold(n_splits=3, random_state=42, shuffle=True)accuracy = []for train_index, test_index in skf.split(X,Y): X_train, X_test = X[train_index], X[test_index] y_train, y_test = Y[train_index], Y[test_index] gradientBoost.fit(X_train, y_train) y_pred = gradientBoost.predict(X_test) accuracy.append(round(accuracy_score(y_test, y_pred), 2)) precision, recall, fscore, support = np.round(score(y_test, y_pred), 2) print('precision: ' + str(precision)) print('recall: ' + str(recall)) print('fscore: ' + str(fscore)) print('support: ' + str(support)) print(classification_report(y_test, y_pred))meanAcc= np.mean(np.asarray(accuracy))print('meanAcc: ', meanAcc)
理论上,我可以像处理准确率一样对所有指标进行平均。是否有更简单和/或更有效的方法?
编辑:
我尝试绘制准确率和加权召回率作为评分器。不幸的是,图表中只显示了准确率。图例中提到了准确率和召回率。
#Initialize classifierclf_gini = DecisionTreeClassifier(criterion = "gini", random_state = 42, max_depth=10, min_samples_leaf=8)scoring = {'Accuracy' : make_scorer(accuracy_score), 'Recall' : 'recall_weighted'}gs = GridSearchCV(DecisionTreeClassifier(criterion= 'entropy', random_state=42, min_samples_leaf = 10), param_grid={'max_depth' : range(2, 30, 2)}, scoring=scoring, cv=3, refit='Accuracy')gs.fit(X_Distances, Y)results = gs.cv_results_plt.figure(figsize=(13, 13))plt.title("GridSearchCV evaluating using multiple scorers simultaneously", fontsize=16)plt.xlabel("max_depth")plt.ylabel("Score")plt.grid()ax = plt.axes()ax.set_xlim(0, 32)ax.set_ylim(0, 1)# Get the regular numpy array from the MaskedArrayX_axis = np.array(results['param_max_depth'].data, dtype=float)for scorer, color in zip(sorted(scoring), ['g', 'k']): for sample, style in (('train', '--'), ('test', '-')): sample_score_mean = results['mean_%s_%s' % (sample, scorer)] sample_score_std = results['std_%s_%s' % (sample, scorer)] ax.fill_between(X_axis, sample_score_mean - sample_score_std, sample_score_mean + sample_score_std, alpha=0.1 if sample == 'test' else 0, color=color) ax.plot(X_axis, sample_score_mean, style, color=color, alpha=1 if sample == 'test' else 0.7, label="%s (%s)" % (scorer, sample)) best_index = np.nonzero(results['rank_test_%s' % scorer] == 1)[0][0] best_score = results['mean_test_%s' % scorer][best_index] # Plot a dotted vertical line at the best score for that scorer marked by x ax.plot([X_axis[best_index], ] * 2, [0, best_score], linestyle='-.', color=color, marker='x', markeredgewidth=3, ms=8) # Annotate the best score for that scorer ax.annotate("%0.2f" % best_score, (X_axis[best_index], best_score + 0.005))plt.legend(loc="best")plt.grid('off')plt.show()
回答:
我们可以使用GridSearchCV进行多指标评估:
# Author: Raghav RV <[email protected]># License: BSDimport numpy as npfrom matplotlib import pyplot as pltfrom sklearn.datasets import make_hastie_10_2from sklearn.model_selection import GridSearchCVfrom sklearn.metrics import make_scorerfrom sklearn.metrics import accuracy_scorefrom sklearn.tree import DecisionTreeClassifier
使用多个评估指标运行GridSearchCV
X, y = make_hastie_10_2(n_samples=8000, random_state=42)# The scorers can be either be one of the predefined metric strings or a scorer# callable, like the one returned by make_scorerscoring = {'AUC': 'roc_auc', 'Accuracy': make_scorer(accuracy_score)}# Setting refit='AUC', refits an estimator on the whole dataset with the# parameter setting that has the best cross-validated AUC score.# That estimator is made available at ``gs.best_estimator_`` along with# parameters like ``gs.best_score_``, ``gs.best_parameters_`` and# ``gs.best_index_``gs = GridSearchCV(DecisionTreeClassifier(random_state=42), param_grid={'min_samples_split': range(2, 403, 10)}, scoring=scoring, cv=5, refit='AUC')gs.fit(X, y)results = gs.cv_results_
绘制结果
plt.figure(figsize=(13, 13))plt.title("GridSearchCV evaluating using multiple scorers simultaneously", fontsize=16)plt.xlabel("min_samples_split")plt.ylabel("Score")plt.grid()ax = plt.axes()ax.set_xlim(0, 402)ax.set_ylim(0.73, 1)# Get the regular numpy array from the MaskedArrayX_axis = np.array(results['param_min_samples_split'].data, dtype=float)for scorer, color in zip(sorted(scoring), ['g', 'k']): for sample, style in (('train', '--'), ('test', '-')): sample_score_mean = results['mean_%s_%s' % (sample, scorer)] sample_score_std = results['std_%s_%s' % (sample, scorer)] ax.fill_between(X_axis, sample_score_mean - sample_score_std, sample_score_mean + sample_score_std, alpha=0.1 if sample == 'test' else 0, color=color) ax.plot(X_axis, sample_score_mean, style, color=color, alpha=1 if sample == 'test' else 0.7, label="%s (%s)" % (scorer, sample)) best_index = np.nonzero(results['rank_test_%s' % scorer] == 1)[0][0] best_score = results['mean_test_%s' % scorer][best_index] # Plot a dotted vertical line at the best score for that scorer marked by x ax.plot([X_axis[best_index], ] * 2, [0, best_score], linestyle='-.', color=color, marker='x', markeredgewidth=3, ms=8) # Annotate the best score for that scorer ax.annotate("%0.2f" % best_score, (X_axis[best_index], best_score + 0.005))plt.legend(loc="best")plt.grid('off')plt.show()
结果: