我编写了下面的代码来使用多项式回归。虽然能够拟合模型,但无法进行预测!
def polynomial_function(power=5, random_state=9): global X_train global y_train X_train = X_train[['item_1','item_2','item_3','item_4']] rng = np.random.RandomState(random_state) poly = PolynomialFeatures(degree=power, include_bias=False) linreg = LinearRegression(normalize=True) new_X_train = poly.fit_transform(X_train) linreg.fit(new_X_train, y_train) new_x_test = np.array([4, 5, 6, 7]).reshape(1, -1) print linreg.predict(new_x_test) return linreglinreg = polynomial_function()
我收到了以下错误消息:
ValueError: shapes (1,4) and (125,) not aligned: 4 (dim 1) != 125 (dim 0)
错误发生在这里,
new_x_test = np.array([4, 5, 6, 7]).reshape(1, -1)print linreg.predict(new_x_test)
我发现 new_X_train 的形状是 (923, 125),而 new_x_test 的形状是 (1, 4)
这有什么关系吗?
当我尝试使用形状为 (1, 4) 的数据进行预测时,算法会尝试将其转换为不同的形状吗?
它会尝试为测试数据找到一个5次多项式吗?
我正在学习多项式回归,有人能解释一下发生了什么吗?
回答:
from sklearn.pipeline import Pipelinefrom sklearn.linear_model import LinearRegressionfrom sklearn.preprocessing import PolynomialFeaturespipeline = Pipeline([ ('poly', PolynomialFeatures(degree=5, include_bias=False)), ('linreg', LinearRegression(normalize=True)) ])pipeline.fit(X_train, y_train)pipeline.predict(np.array([4, 5, 6, 7]).reshape(1, -1))