使用多个包含多条线和数据点的go.Figure对象创建子图

如何使用一组包含多条线和数据点的go.Figure对象创建子图呢?解释如下:

# 数据可视化from plotly.subplots import make_subplotsimport plotly.graph_objects as goepoch_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]loss_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]val_loss_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]error_rate = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]val_error_rate = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]loss_plots = [go.Scatter(x=epoch_list,                         y=loss_list,                         mode='lines',                         name='Loss',                         line=dict(width=4)),              go.Scatter(x=epoch_list,                         y=val_loss_list,                         mode='lines',                         name='Validation Loss',                         line=dict(width=4))]loss_figure = go.Figure(data=loss_plots)error_plots = [go.Scatter(x=epoch_list,                          y=loss_list,                          mode='lines',                          name='Error Rate',                          line=dict(width=4)),               go.Scatter(x=epoch_list,                          y=val_loss_list,                          mode='lines',                          name='Validation Error Rate',                          line=dict(width=4))]error_figure = go.Figure(data=error_plots)metric_figure = make_subplots(    rows=3, cols=2,    specs=[[{}, {}],           [{}, {}],           [{'colspan': 2}, {}]])metric_figure.append_trace(loss_figure, row=1, col=1)metric_figure.append_trace(error_figure, row=1, col=2)metric_figure.show()

在尝试创建子图时,我遇到的错误是“invalid element(s) received for the ‘data’ property of Invalid elements include: [Figure”。我认为我知道错误发生的原因,但有没有解决的办法?我仍然希望更改每个图的布局,并在单个图上显示多条线。


回答:

这是一个简单的解决方案,通过遍历每个图中的轨迹并将它们添加到所需的子图中。

# 数据可视化from plotly.subplots import make_subplotsimport plotly.graph_objects as goepoch_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]loss_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]val_loss_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]error_rate = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]val_error_rate = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]loss_plots = [go.Scatter(x=epoch_list,                         y=loss_list,                         mode='lines',                         name='Loss',                         line=dict(width=4)),              go.Scatter(x=epoch_list,                         y=val_loss_list,                         mode='lines',                         name='Validation Loss',                         line=dict(width=4))]loss_figure = go.Figure(data=loss_plots)error_plots = [go.Scatter(x=epoch_list,                          y=loss_list,                          mode='lines',                          name='Error Rate',                          line=dict(width=4)),               go.Scatter(x=epoch_list,                          y=val_loss_list,                          mode='lines',                          name='Validation Error Rate',                          line=dict(width=4))]error_figure = go.Figure(data=error_plots)metric_figure = make_subplots(    rows=3, cols=2,    specs=[[{}, {}],           [{}, {}],           [{'colspan': 2}, {}]])for t in loss_figure.data:    metric_figure.append_trace(t, row=1, col=1)for t in error_figure.data:    metric_figure.append_trace(t, row=1, col=2)metric_figure.show()

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注