使用Conv1D尝试创建用于信号处理的u-net结构

我尝试使用Tensorflow2创建一个用于信号处理应用的类似u-net的神经网络(自动编码器)结构。然而,在训练模型时遇到了一些问题。

这是我定义的神经网络结构。

 def build_unet(input_shape, n_filters_list = [16, 32]):    inputs = Input(shape=input_shape)    print("in", inputs)    contraction = {}    for f in n_filters_list:        x = Conv1D(f, 5, activation='relu', kernel_initializer='he_normal', padding='same')(inputs)        x = Dropout(0.1)(x)        x = Conv1D(f, 5, activation='relu', kernel_initializer='he_normal', padding='same')(x)        contraction[f'conv{f}'] = x        x = MaxPooling1D(pool_size=4,strides=2)(x)        print("enc", x)        inputs = x    c5 = Conv1D(160, 5, activation='relu', kernel_initializer='he_normal', padding='same')(inputs)    c5 = Dropout(0.2)(c5)    c5 = Conv1D(160, 5, activation='relu', kernel_initializer='he_normal', padding='same')(c5)    print("c5",c5)    inputs = c5    print(inputs)    for i,f in zip([0,0],reversed(n_filters_list)):        x = Conv1DTranspose(f, 4 + i, 2)(inputs)        print("dec",x)        x = concatenate([x, contraction[f'conv{f}']])        x = Conv1D(f, 5, activation='relu', kernel_initializer='he_normal', padding='same')(x)        x = Dropout(0.2)(x)        x = Conv1D(f, 5, activation='relu', kernel_initializer='he_normal', padding='same')(x)        inputs = x    outputs = Conv1D(filters=1, kernel_size=3, activation="tanh", padding="same")(inputs)    print("out",outputs)    return Model(inputs=inputs, outputs=outputs)

它可以像往常一样编译。

model = build_unet(input_shape=(3490,1))model.compile(optimizer="Adam", loss='mean_squared_error')

我还尝试查看模型摘要。然而,它显示了意外的结果,因为它显示我只有2层。

enter image description here

当我尝试按以下方式训练我的模型时:

history = model.fit(training_generator,                validation_data=validation_generator,                epochs=100)

它出现了这个错误:

ValueError: in user code:File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1021, in train_function  *    return step_function(self, iterator)File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1010, in step_function  **    outputs = model.distribute_strategy.run(run_step, args=(data,))File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1000, in run_step  **    outputs = model.train_step(data)File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 859, in train_step    y_pred = self(x, training=True)File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 67, in error_handler    raise e.with_traceback(filtered_tb) from NoneFile "/usr/local/lib/python3.7/dist-packages/keras/engine/input_spec.py", line 228, in assert_input_compatibility    raise ValueError(f'Input {input_index} of layer "{layer_name}" 'ValueError: Exception encountered when calling layer "model_1" (type Functional).Input 0 of layer "conv1d_77" is incompatible with the layer: expected min_ndim=3, found ndim=2. Full shape received: (None, None)Call arguments received:  • inputs=tf.Tensor(shape=(None, None), dtype=float32)  • training=True  • mask=None

有谁能提供我这个意外模型摘要和错误的原因,以及我该如何修复这个问题吗?

非常感谢。


回答:

您多次覆盖了inputs变量,所以当您在这里创建模型时Model(inputs = inputs, outputs = outputs),您的inputs变量实际上并不包含Input(shape=input_shape)

您可以基本保持代码不变,但添加一个额外的变量来记住初始输入层,像这样initial_input = inputs = Input(shape=input_shape),然后在创建模型时使用initial_input变量,像这样Model(inputs = initial_input, outputs = outputs)

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注