使用Conv1D尝试创建用于信号处理的u-net结构

我尝试使用Tensorflow2创建一个用于信号处理应用的类似u-net的神经网络(自动编码器)结构。然而,在训练模型时遇到了一些问题。

这是我定义的神经网络结构。

 def build_unet(input_shape, n_filters_list = [16, 32]):    inputs = Input(shape=input_shape)    print("in", inputs)    contraction = {}    for f in n_filters_list:        x = Conv1D(f, 5, activation='relu', kernel_initializer='he_normal', padding='same')(inputs)        x = Dropout(0.1)(x)        x = Conv1D(f, 5, activation='relu', kernel_initializer='he_normal', padding='same')(x)        contraction[f'conv{f}'] = x        x = MaxPooling1D(pool_size=4,strides=2)(x)        print("enc", x)        inputs = x    c5 = Conv1D(160, 5, activation='relu', kernel_initializer='he_normal', padding='same')(inputs)    c5 = Dropout(0.2)(c5)    c5 = Conv1D(160, 5, activation='relu', kernel_initializer='he_normal', padding='same')(c5)    print("c5",c5)    inputs = c5    print(inputs)    for i,f in zip([0,0],reversed(n_filters_list)):        x = Conv1DTranspose(f, 4 + i, 2)(inputs)        print("dec",x)        x = concatenate([x, contraction[f'conv{f}']])        x = Conv1D(f, 5, activation='relu', kernel_initializer='he_normal', padding='same')(x)        x = Dropout(0.2)(x)        x = Conv1D(f, 5, activation='relu', kernel_initializer='he_normal', padding='same')(x)        inputs = x    outputs = Conv1D(filters=1, kernel_size=3, activation="tanh", padding="same")(inputs)    print("out",outputs)    return Model(inputs=inputs, outputs=outputs)

它可以像往常一样编译。

model = build_unet(input_shape=(3490,1))model.compile(optimizer="Adam", loss='mean_squared_error')

我还尝试查看模型摘要。然而,它显示了意外的结果,因为它显示我只有2层。

enter image description here

当我尝试按以下方式训练我的模型时:

history = model.fit(training_generator,                validation_data=validation_generator,                epochs=100)

它出现了这个错误:

ValueError: in user code:File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1021, in train_function  *    return step_function(self, iterator)File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1010, in step_function  **    outputs = model.distribute_strategy.run(run_step, args=(data,))File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1000, in run_step  **    outputs = model.train_step(data)File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 859, in train_step    y_pred = self(x, training=True)File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 67, in error_handler    raise e.with_traceback(filtered_tb) from NoneFile "/usr/local/lib/python3.7/dist-packages/keras/engine/input_spec.py", line 228, in assert_input_compatibility    raise ValueError(f'Input {input_index} of layer "{layer_name}" 'ValueError: Exception encountered when calling layer "model_1" (type Functional).Input 0 of layer "conv1d_77" is incompatible with the layer: expected min_ndim=3, found ndim=2. Full shape received: (None, None)Call arguments received:  • inputs=tf.Tensor(shape=(None, None), dtype=float32)  • training=True  • mask=None

有谁能提供我这个意外模型摘要和错误的原因,以及我该如何修复这个问题吗?

非常感谢。


回答:

您多次覆盖了inputs变量,所以当您在这里创建模型时Model(inputs = inputs, outputs = outputs),您的inputs变量实际上并不包含Input(shape=input_shape)

您可以基本保持代码不变,但添加一个额外的变量来记住初始输入层,像这样initial_input = inputs = Input(shape=input_shape),然后在创建模型时使用initial_input变量,像这样Model(inputs = initial_input, outputs = outputs)

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注