我知道有一些库允许从 Python 代码中使用支持向量机,但我特别寻找允许在线教学的库(也就是说,不必一次性给出所有数据)。
有这样的库吗?
回答:
LibSVM 包含一个通过 SWIG 工作的 Python 包装器。
来自其发行版的示例 svm-test.py:
#!/usr/bin/env pythonfrom svm import *# a three-class problemlabels = [0, 1, 1, 2]samples = [[0, 0], [0, 1], [1, 0], [1, 1]]problem = svm_problem(labels, samples);size = len(samples)kernels = [LINEAR, POLY, RBF]kname = ['linear','polynomial','rbf']param = svm_parameter(C = 10,nr_weight = 2,weight_label = [1,0],weight = [10,1])for k in kernels: param.kernel_type = k; model = svm_model(problem,param) errors = 0 for i in range(size): prediction = model.predict(samples[i]) probability = model.predict_probability if (labels[i] != prediction): errors = errors + 1 print "##########################################" print " kernel %s: error rate = %d / %d" % (kname[param.kernel_type], errors, size) print "##########################################"param = svm_parameter(kernel_type = RBF, C=10)model = svm_model(problem, param)print "##########################################"print " Decision values of predicting %s" % (samples[0])print "##########################################"print "Numer of Classes:", model.get_nr_class()d = model.predict_values(samples[0])for i in model.get_labels(): for j in model.get_labels(): if j>i: print "{%d, %d} = %9.5f" % (i, j, d[i,j])param = svm_parameter(kernel_type = RBF, C=10, probability = 1)model = svm_model(problem, param)pred_label, pred_probability = model.predict_probability(samples[1])print "##########################################"print " Probability estimate of predicting %s" % (samples[1])print "##########################################"print "predicted class: %d" % (pred_label)for i in model.get_labels(): print "prob(label=%d) = %f" % (i, pred_probability[i])print "##########################################"print " Precomputed kernels"print "##########################################"samples = [[1, 0, 0, 0, 0], [2, 0, 1, 0, 1], [3, 0, 0, 1, 1], [4, 0, 1, 1, 2]]problem = svm_problem(labels, samples);param = svm_parameter(kernel_type=PRECOMPUTED,C = 10,nr_weight = 2,weight_label = [1,0],weight = [10,1])model = svm_model(problem, param)pred_label = model.predict(samples[0])