Scikit Learn – ValueError: 操作数无法一起广播

我在尝试对数据集应用Gaussian Naive Bayes模型来预测疾病。当使用训练数据进行预测时运行正常,但当我尝试使用测试数据进行预测时,它会返回ValueError错误。

runfile(‘D:/ROFI/ML/Heart Disease/prediction.py’, wdir=’D:/ROFI/ML/Heart Disease’) Traceback (most recent call last):

File “”, line 1, in runfile(‘D:/ROFI/ML/Heart Disease/prediction.py’, wdir=’D:/ROFI/ML/Heart Disease’)

File “C:\Users\User\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py”, line 866, in runfile execfile(filename, namespace)

File “C:\Users\User\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py”, line 102, in execfile exec(compile(f.read(), filename, ‘exec’), namespace)

File “D:/ROFI/ML/Heart Disease/prediction.py”, line 85, in predict(x_train, y_train, x_test, y_test)

File “D:/ROFI/ML/Heart Disease/prediction.py”, line 73, in predict predicted_data = model.predict(x_test)

File “C:\Users\User\Anaconda3\lib\site-packages\sklearn\naive_bayes.py”, line 65, in predict jll = self._joint_log_likelihood(X)

File “C:\Users\User\Anaconda3\lib\site-packages\sklearn\naive_bayes.py”, line 429, in _joint_log_likelihood n_ij -= 0.5 * np.sum(((X – self.theta_[i, :]) ** 2) /

ValueError: operands could not be broadcast together with shapes (294,14) (15,)

这里出了什么问题?

import pandasfrom sklearn import metricsfrom sklearn.preprocessing import Imputerfrom sklearn.naive_bayes import GaussianNB    def load_data(feature_columns, predicted_column):    train_data_frame = pandas.read_excel("training_data.xlsx")    test_data_frame = pandas.read_excel("testing_data.xlsx")    data_frame = pandas.read_excel("data_set.xlsx")    x_train = train_data_frame[feature_columns].values    y_train = train_data_frame[predicted_column].values    x_test = test_data_frame[feature_columns].values    y_test = test_data_frame[predicted_column].values    x_train, x_test = impute(x_train, x_test)    return x_train, y_train, x_test, y_testdef impute(x_train, x_test):    fill_missing = Imputer(missing_values=-9, strategy="mean", axis=0)    x_train = fill_missing.fit_transform(x_train)    x_test = fill_missing.fit_transform(x_test)    return x_train, x_testdef predict(x_train, y_train, x_test, y_test):    model = GaussianNB()    model.fit(x_train, y_train.ravel())    predicted_data = model.predict(x_test)    accuracy = metrics.accuracy_score(y_test, predicted_data)    print("Accuracy of our naive bayes model is : %.2f"%(accuracy * 100))    return predicted_datapredicted_column = ["cp"]feature_columns = ["age", "sex", "chol", "cigs", "years", "fbs", "trestbps", "restecg", "thalach", "exang", "oldpeak", "slope", "ca", "thal", "num"]x_train, y_train, x_test, y_test = load_data(feature_columns, predicted_column)predict(x_train, y_train, x_test, y_test)

注意:两个文件的列数相同。


回答:

我找到了错误。错误是由Imputer引起的。Imputer用于替换数据集中的缺失值。但是,如果某列完全由缺失值组成,它会删除该列。我的测试数据集中有一列完全是缺失值。因此,Imputer删除了该列,导致形状与训练数据不匹配,这就是错误的原因。我从feature_columns列表中移除了完全由缺失值组成的列名,问题就解决了。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注