我正在使用Scikit learn开发一个SVM分类器。我有378个特征,并且在拟合我的分类器后发现,数据的最佳特征数量是41个。现在我想知道这41个特征具体是哪些。为了对每个特征的重要性进行排序,我使用了以下方法:
selector.ranking_
这给了我以下输出:
array([294, 285, 265, 239, 345, 240, 231, 282, 284, 341, 344, 244, 224, 123, 151, 194, 190, 161, 170, 219, 227, 283, 275, 121, 177, 140, 164, 353, 185, 230, 293, 320, 256, 37, 4, 321, 322, 267, 327, 273, 206, 241, 169, 110, 147, 323, 242, 168, 24, 301, 19, 204, 69, 297, 362, 281, 257, 334, 108, 73, 325, 326, 331, 268, 207, 272, 274, 348, 39, 61, 243, 324, 189, 134, 142, 181, 23, 99, 356, 247, 276, 205, 27, 72, 221, 339, 149, 43, 54, 103, 238, 192, 143, 84, 114, 154, 9, 32, 75, 178, 291, 158, 237, 328, 292, 81, 85, 264, 337, 97, 68, 31, 44, 234, 352, 302, 193, 82, 52, 45, 60, 355, 132, 83, 258, 233, 223, 277, 288, 340, 342, 236, 232, 104, 126, 179, 162, 152, 173, 222, 235, 278, 269, 14, 171, 138, 163, 367, 102, 119, 309, 308, 129, 42, 200, 280, 93, 55, 62, 47, 213, 175, 6, 26, 116, 66, 165, 128, 88, 29, 307, 306, 208, 167, 279, 199, 130, 191, 5, 25, 131, 67, 87, 46, 370, 172, 259, 166, 378, 76, 3, 153, 148, 218, 262, 95, 120, 144, 125, 260, 330, 251, 209, 89, 91, 118, 2, 101, 48, 212, 186, 263, 217, 77, 65, 28, 78, 329, 261, 176, 150, 349, 117, 90, 34, 365, 298, 296, 228, 225, 216, 198, 311, 300, 304, 310, 317, 315, 109, 314, 1, 86, 299, 295, 229, 226, 343, 364, 63, 133, 303, 305, 318, 316, 366, 157, 156, 49, 359, 290, 188, 248, 174, 245, 203, 336, 215, 319, 250, 124, 135, 201, 33, 187, 289, 220, 350, 202, 246, 214, 338, 249, 335, 363, 184, 136, 41, 351, 80, 53, 145, 313, 183, 287, 211, 271, 96, 107, 74, 127, 16, 22, 312, 146, 286, 182, 270, 210, 346, 40, 15, 266, 347, 7, 17, 195, 70, 51, 113, 100, 180, 50, 122, 18, 11, 141, 94, 105, 159, 357, 368, 92, 64, 358, 196, 253, 79, 21, 59, 13, 111, 10, 252, 197, 56, 8, 361, 58, 57, 30, 371, 254, 333, 35, 20, 139, 155, 332, 255, 360, 38, 71, 115, 354, 112, 12, 137, 160, 369, 36, 98, 106, 372, 373, 374, 375, 376, 377])
我的每个特征都有一个特征名称(而不仅仅是数字)。我可以查看索引并将每个数字映射到相应的特征名称,但处理378个特征时这有点繁琐。有没有一种方法可以简单地列出特征名称而不是列索引号?
谢谢。
回答:
假设你使用的是pandas,你可以简单地这样做:
for col_num in selector.ranking_ : print(yourDataFrame.columns[col_num])
其他选项很难说,除非我们不知道你的selector
是什么。如果你有例如from sklearn.feature_selection import SelectKBest
,你可以这样做:
mask = selector.get_support() #布尔值列表 new_features = [] #在接下来的循环中变成你的K个最佳特征的列表 for bool, feature in zip(mask, feature_names): if bool: new_features.append(feature)