我是一名机器学习的初学者,正在通过Kaggle比赛学习。我从泰坦尼克号比赛开始,现在正试图使用scikit-learn的accuracy_score
函数来测量我的预测准确度,但输出结果似乎不太合理。以下是我得到的输出:
[1. 0. 1. 0. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 0. 1.]<function accuracy_score at 0x000001AA46EFBD90>
这是我的代码:
*imports have been omitted to avoid crowding train_path = "C:\\Users\\Omar\\Downloads\\Titanic Data\\train.csv" train_data = pd.read_csv(train_path) train_data['Sex'] = pd.factorize(train_data.Sex)[0] columns_of_interest = ['Survived','Pclass', 'Sex', 'Age'] filtered_titanic_data = train_data.dropna(axis=0) x = filtered_titanic_data[columns_of_interest] y = filtered_titanic_data.Survived train_x, val_x, train_y, val_y = train_test_split(x, y, random_state=0) titanic_model = DecisionTreeRegressor() titanic_model.fit(train_x, train_y) val_predictions = titanic_model.predict(val_x) accuracy_score(val_y, val_predictions) print(val_predictions) print(accuracy_score)
回答:
你需要打印accuracy_score(val_y, val_predictions)
行的结果。
例如,print(accuracy_score(val_y, val_predictions))