我有一个数据集,包含14个不同的特征/列和4328行,我已经处理并将其转换为形状为(4328, 14)的NumPy数组。随后,我在这个NumPy数组上应用了均值漂移算法来训练我的模型,将数据点划分为29个不同的聚类。
聚类中心:
array([[ 0.00000000e+00, 2.88896062e+02, 2.78953471e+02, 2.08648004e+02, 2.12223611e+02, 5.38985939e+01, 3.71283150e-01, 5.70311771e+03, 4.54253094e-01, 1.30592925e+00, 6.64259488e+00, 3.82481843e+00, 6.43865296e+00, 6.43865296e+00], [ 0.00000000e+00, 2.83183908e+02, 9.48864664e+01, 3.59258621e+03, 9.05744253e+01, 8.35206117e+00, 4.13793103e-01, 5.70172414e+03, 2.78249425e-01, 8.88868966e-01, 6.63727816e+00, 4.84751149e+00, 6.61705172e+00, 6.61705172e+00], [ 0.00000000e+00, 3.15511628e+02, 7.55761355e+01, 6.52134884e+03, 7.04900000e+01, 6.69296631e+00, 3.72093023e-01, 5.69984767e+03, 3.52367442e-01, 9.50423256e-01, 6.81103721e+00, 2.70016977e+00, 3.48411628e+00, 3.48411628e+00], [ 0.00000000e+00, 2.98297297e+02, 4.95190674e+01, 9.43194595e+03, 4.64532432e+01, 4.89748830e+00, 3.24324324e-01, 5.69470405e+03, 1.71972973e-01, 1.21458649e+00, 6.85496486e+00, 3.54600000e+00, 5.62750811e+00, 5.62750811e+00], [ 0.00000000e+00, 3.60428571e+02, 3.22145995e+03, 9.85714286e+00, 3.24273036e+03, -6.35189676e-01, 4.64285714e-01, 5.65968214e+03, -2.39050000e-01, 7.49132143e-01, 6.57582857e+00, -2.07893214e+00, -6.82446429e-01, -6.82446429e-01], [ 0.00000000e+00, 2.48600000e+02, 4.35963021e+01, 1.18772000e+04, 4.21820000e+01, 3.25541197e+00, 4.00000000e-01, 5.69281500e+03, -4.94350000e-01, -1.41250000e-01, 7.01363000e+00, -7.76800000e-02, 2.37982000e+00, 2.37982000e+00], [ 0.00000000e+00, 2.56777778e+02, 3.86608797e+01, 1.48944444e+04, 3.43100000e+01, 1.36524043e+01, 2.22222222e-01, 5.70588333e+03, -4.92000000e-02, 8.88366667e-01, 6.78814444e+00, 5.58971111e+00, 6.56455556e+00, 6.56455556e+00], [ 0.00000000e+00, 3.14111111e+02, 4.78123643e+01, 2.02325556e+04, 4.67500000e+01, 4.74006148e+00, 5.55555556e-01, 5.70420556e+03, -2.40100000e-01, 8.96300000e-01, 7.09418889e+00, 6.68292222e+00, 1.12132667e+01, 1.12132667e+01], [ 0.00000000e+00, 3.47200000e+02, 3.63744453e+01, 5.02000000e+04, 3.45700000e+01, 4.97221480e+00, 8.00000000e-01, 5.67206000e+03, -9.79280000e-01, -1.08820000e-01, 7.67404000e+00, 1.17406000e+00, 1.44780600e+01, 1.44780600e+01], [ 0.00000000e+00, 5.46000000e+02, 1.04748000e+04, 5.66666667e+00, 1.02684667e+04, 2.01687216e+00, 3.33333333e-01, 5.72818333e+03, 5.43600000e-01, 1.35213333e+00, 5.60560000e+00, 3.07716667e+00, 2.22003333e+00, 2.22003333e+00], [ 0.00000000e+00, 2.09000000e+02, 2.39866667e+02, 1.17000000e+02, 2.33150000e+02, 1.67530023e+00, 1.00000000e+00, 9.13930000e+03, -1.69290000e+00, -7.47800000e-01, 2.30790000e+00, 7.06666667e-01, 1.86860000e+00, 1.86860000e+00], [ 0.00000000e+00, 2.01666667e+02, 6.86686111e+01, 2.57380000e+04, 6.56333333e+01, 5.85024181e+00, 3.33333333e-01, 5.75526667e+03, 1.19680000e+00, 2.18410000e+00, 6.13906667e+00, 1.75683667e+01, 1.90339000e+01, 1.90339000e+01], [ 0.00000000e+00, 5.08000000e+02, 4.60818500e+04, 4.00000000e+00, 4.42663500e+03, 9.41967667e+02, 5.00000000e-01, 5.73742500e+03, -2.17150000e-01, 1.11570000e+00, 6.81375000e+00, 2.84170000e+00, 1.07105000e+00, 1.07105000e+00], [ 0.00000000e+00, 5.15000000e+02, 1.23800000e+03, 2.00000000e+00, 3.66200000e+01, 3.28066630e+03, 0.00000000e+00, 5.70330000e+03, 2.96260000e+00, 2.53060000e+00, 6.56880000e+00, 2.56620000e+00, 5.00280000e+00, 5.00280000e+00], [ 0.00000000e+00, 1.53000000e+02, 2.67980246e+01, 2.50000000e+05, 2.46500000e+01, 8.71409574e+00, 1.00000000e+00, 5.70805000e+03, -9.63100000e-01, 4.70000000e-01, 6.79200000e+00, -5.11360000e+00, 8.20730000e+00, 8.20730000e+00], [ 0.00000000e+00, 5.74000000e+02, 2.67405322e+01, 4.10020000e+04, 2.49200000e+01, 7.30550630e+00, 1.00000000e+00, 5.73125000e+03, 2.08130000e+00, 3.34910000e+00, 6.92330000e+00, 5.08680000e+00, 8.58970000e+00, 8.58970000e+00], [ 0.00000000e+00, 5.22000000e+02, 1.00364364e+02, 3.75630000e+04, 4.90300000e+01, 1.04699906e+02, 1.00000000e+00, 5.71880000e+03, 7.04600000e-01, 2.16130000e+00, 5.72310000e+00, -3.00900000e-01, 1.32520000e+00, 1.32520000e+00], [ 0.00000000e+00, 3.46000000e+02, 2.24756530e+02, 1.27403000e+05, 2.22800000e+02, 8.78155326e-01, 1.00000000e+00, 5.70805000e+03, -9.63100000e-01, 4.70000000e-01, 6.79200000e+00, 2.50200000e-01, 5.96300000e+00, 5.96300000e+00], [ 0.00000000e+00, 3.09000000e+02, 4.50972829e+01, 3.50000000e+04, 4.33000000e+01, 4.15076872e+00, 0.00000000e+00, 5.67600000e+03, 9.75300000e-01, 6.17300000e-01, 6.62310000e+00, 4.01550000e+01, 4.19152000e+01, 4.19152000e+01], [ 0.00000000e+00, 3.46000000e+02, 2.26916384e+02, 1.00000000e+05, 2.24950000e+02, 8.74142476e-01, 1.00000000e+00, 5.65215000e+03, -1.88000000e-01, 7.87500000e-01, 7.94750000e+00, -3.13200000e-01, 6.47550000e+00, 6.47550000e+00], [ 0.00000000e+00, 3.46000000e+02, 2.20191000e+02, 2.75000000e+05, 2.31950000e+02, -5.06962715e+00, 1.00000000e+00, 5.70460000e+03, -8.96800000e-01, -3.83300000e-01, 5.95260000e+00, 5.14140000e+00, 7.58010000e+00, 7.58010000e+00], [ 0.00000000e+00, 2.18000000e+02, 1.69836215e+02, 6.00000000e+04, 1.73550000e+02, -2.13989340e+00, 1.00000000e+00, 5.74695000e+03, 2.21600000e-01, -2.66200000e-01, 5.37060000e+00, 4.42260000e+00, 1.03538000e+01, 1.03538000e+01], [ 0.00000000e+00, 9.10000000e+01, 5.03828125e+01, 3.20000000e+04, 4.85000000e+01, 3.88208763e+00, 0.00000000e+00, 5.71880000e+03, 7.04600000e-01, 2.16130000e+00, 5.72310000e+00, 7.97870000e+00, 1.43018000e+01, 1.43018000e+01], [ 0.00000000e+00, 1.82000000e+02, 3.66395435e+01, 5.40000000e+04, 3.63500000e+01, 7.96543380e-01, 1.00000000e+00, 5.67605000e+03, -1.73390000e+00, -2.81400000e-01, 8.15350000e+00, -2.00800000e+00, 1.52570000e+00, 1.52570000e+00], [ 0.00000000e+00, 3.43000000e+02, 2.31617647e+01, 1.70000000e+04, 2.16500000e+01, 6.98274691e+00, 0.00000000e+00, 5.67600000e+03, 9.75300000e-01, 6.17300000e-01, 6.62310000e+00, 2.45333000e+01, 2.12987000e+01, 2.12987000e+01], [ 0.00000000e+00, 2.18000000e+02, 1.63871636e+02, 1.19500000e+05, 1.61950000e+02, 1.18656127e+00, 1.00000000e+00, 5.64800000e+03, -2.77500000e-01, -1.23880000e+00, 7.32370000e+00, -6.76500000e-01, -7.47950000e+00, -7.47950000e+00], [ 0.00000000e+00, 3.46000000e+02, 2.24871313e+02, 7.25970000e+04, 2.22800000e+02, 9.29673637e-01, 1.00000000e+00, 5.70805000e+03, -9.63100000e-01, 4.70000000e-01, 6.79200000e+00, 2.50200000e-01, 5.96300000e+00, 5.96300000e+00], [ 0.00000000e+00, 5.70000000e+01, 1.02000000e+01, 2.35008000e+05, 1.05000000e+01, -2.85714286e+00, 1.00000000e+00, 5.70460000e+03, -8.96800000e-01, -3.83300000e-01, 5.95260000e+00, -3.77360000e+00, 2.51260000e+00, 2.51260000e+00], [ 0.00000000e+00, 2.10000000e+01, 1.19055525e+01, 4.15000000e+05, 1.14000000e+01, 4.43467132e+00, 1.00000000e+00, 5.67605000e+03, -1.73390000e+00, -2.81400000e-01, 8.15350000e+00, -1.69065000e+01, -2.84830000e+01, -2.84830000e+01]]))
现在,我不太确定为什么我的聚类连同各种数据点都被绘制成了一条直线,每个坐标的X轴值都是0。我在这里遗漏了什么吗?如果我想将它们聚类成不同的聚类,我应该以不同的方式预处理我的数据集吗?
编辑1:用于绘制上述图表的代码(clf
是我模型对象的名称):
labels = clf.labels_cluster_centers = clf.cluster_centers_n_clusters_ = len(np.unique(labels))colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')for k, col in zip(range(n_clusters_), colors): my_members = labels == k cluster_center = cluster_centers[k] plt.plot(X[my_members, 0], X[my_members, 1], col + '.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14)plt.title('估计的聚类数量: %d' % n_clusters_)plt.show()
回答:
由于你的数据有14个特征,均值漂移算法会尝试在14维空间中识别“块”/聚类,并在你的4328个数据点中找到了29个中心。所以你的聚类输出描述了14维空间中的29个点 – 因此形状是29×14 – 这在二维图表中很难可视化。
在绘图时,你目前只使用了聚类输出的前两个维度(plot(X[my_members, 0], X[my_members, 1], ...
),由于第一维度似乎都是零,所以绘制的点最终形成了一条直线。
如果你只对聚类结果感兴趣,你已经在clf.labels_
输出中得到了结果,这应该是一个4328×1的向量。
为了可视化高维点,你可以尝试将聚类数据分成几个子图(或许7个二维图),或者尝试以某种方式减少维度(你可以从删除第一列开始,因为所有值都是相同的 – 零)
在二维(或三维图)中可视化更高维度数据的另一种方法是t-SNE,或许你应该看看这个。它在scikit-learn中也有提供,并且有一个简短的介绍在这个Google Talk