Scikit learn: 在多维数据集上应用均值漂移算法

我有一个数据集,包含14个不同的特征/列和4328行,我已经处理并将其转换为形状为(4328, 14)的NumPy数组。随后,我在这个NumPy数组上应用了均值漂移算法来训练我的模型,将数据点划分为29个不同的聚类。

聚类中心:

array([[ 0.00000000e+00,  2.88896062e+02,  2.78953471e+02,         2.08648004e+02,  2.12223611e+02,  5.38985939e+01,         3.71283150e-01,  5.70311771e+03,  4.54253094e-01,         1.30592925e+00,  6.64259488e+00,  3.82481843e+00,         6.43865296e+00,  6.43865296e+00],       [ 0.00000000e+00,  2.83183908e+02,  9.48864664e+01,         3.59258621e+03,  9.05744253e+01,  8.35206117e+00,         4.13793103e-01,  5.70172414e+03,  2.78249425e-01,         8.88868966e-01,  6.63727816e+00,  4.84751149e+00,         6.61705172e+00,  6.61705172e+00],       [ 0.00000000e+00,  3.15511628e+02,  7.55761355e+01,         6.52134884e+03,  7.04900000e+01,  6.69296631e+00,         3.72093023e-01,  5.69984767e+03,  3.52367442e-01,         9.50423256e-01,  6.81103721e+00,  2.70016977e+00,         3.48411628e+00,  3.48411628e+00],       [ 0.00000000e+00,  2.98297297e+02,  4.95190674e+01,         9.43194595e+03,  4.64532432e+01,  4.89748830e+00,         3.24324324e-01,  5.69470405e+03,  1.71972973e-01,         1.21458649e+00,  6.85496486e+00,  3.54600000e+00,         5.62750811e+00,  5.62750811e+00],       [ 0.00000000e+00,  3.60428571e+02,  3.22145995e+03,         9.85714286e+00,  3.24273036e+03, -6.35189676e-01,         4.64285714e-01,  5.65968214e+03, -2.39050000e-01,         7.49132143e-01,  6.57582857e+00, -2.07893214e+00,        -6.82446429e-01, -6.82446429e-01],       [ 0.00000000e+00,  2.48600000e+02,  4.35963021e+01,         1.18772000e+04,  4.21820000e+01,  3.25541197e+00,         4.00000000e-01,  5.69281500e+03, -4.94350000e-01,        -1.41250000e-01,  7.01363000e+00, -7.76800000e-02,         2.37982000e+00,  2.37982000e+00],       [ 0.00000000e+00,  2.56777778e+02,  3.86608797e+01,         1.48944444e+04,  3.43100000e+01,  1.36524043e+01,         2.22222222e-01,  5.70588333e+03, -4.92000000e-02,         8.88366667e-01,  6.78814444e+00,  5.58971111e+00,         6.56455556e+00,  6.56455556e+00],       [ 0.00000000e+00,  3.14111111e+02,  4.78123643e+01,         2.02325556e+04,  4.67500000e+01,  4.74006148e+00,         5.55555556e-01,  5.70420556e+03, -2.40100000e-01,         8.96300000e-01,  7.09418889e+00,  6.68292222e+00,         1.12132667e+01,  1.12132667e+01],       [ 0.00000000e+00,  3.47200000e+02,  3.63744453e+01,         5.02000000e+04,  3.45700000e+01,  4.97221480e+00,         8.00000000e-01,  5.67206000e+03, -9.79280000e-01,        -1.08820000e-01,  7.67404000e+00,  1.17406000e+00,         1.44780600e+01,  1.44780600e+01],       [ 0.00000000e+00,  5.46000000e+02,  1.04748000e+04,         5.66666667e+00,  1.02684667e+04,  2.01687216e+00,         3.33333333e-01,  5.72818333e+03,  5.43600000e-01,         1.35213333e+00,  5.60560000e+00,  3.07716667e+00,         2.22003333e+00,  2.22003333e+00],       [ 0.00000000e+00,  2.09000000e+02,  2.39866667e+02,         1.17000000e+02,  2.33150000e+02,  1.67530023e+00,         1.00000000e+00,  9.13930000e+03, -1.69290000e+00,        -7.47800000e-01,  2.30790000e+00,  7.06666667e-01,         1.86860000e+00,  1.86860000e+00],       [ 0.00000000e+00,  2.01666667e+02,  6.86686111e+01,         2.57380000e+04,  6.56333333e+01,  5.85024181e+00,         3.33333333e-01,  5.75526667e+03,  1.19680000e+00,         2.18410000e+00,  6.13906667e+00,  1.75683667e+01,         1.90339000e+01,  1.90339000e+01],       [ 0.00000000e+00,  5.08000000e+02,  4.60818500e+04,         4.00000000e+00,  4.42663500e+03,  9.41967667e+02,         5.00000000e-01,  5.73742500e+03, -2.17150000e-01,         1.11570000e+00,  6.81375000e+00,  2.84170000e+00,         1.07105000e+00,  1.07105000e+00],       [ 0.00000000e+00,  5.15000000e+02,  1.23800000e+03,         2.00000000e+00,  3.66200000e+01,  3.28066630e+03,         0.00000000e+00,  5.70330000e+03,  2.96260000e+00,         2.53060000e+00,  6.56880000e+00,  2.56620000e+00,         5.00280000e+00,  5.00280000e+00],       [ 0.00000000e+00,  1.53000000e+02,  2.67980246e+01,         2.50000000e+05,  2.46500000e+01,  8.71409574e+00,         1.00000000e+00,  5.70805000e+03, -9.63100000e-01,         4.70000000e-01,  6.79200000e+00, -5.11360000e+00,         8.20730000e+00,  8.20730000e+00],       [ 0.00000000e+00,  5.74000000e+02,  2.67405322e+01,         4.10020000e+04,  2.49200000e+01,  7.30550630e+00,         1.00000000e+00,  5.73125000e+03,  2.08130000e+00,         3.34910000e+00,  6.92330000e+00,  5.08680000e+00,         8.58970000e+00,  8.58970000e+00],       [ 0.00000000e+00,  5.22000000e+02,  1.00364364e+02,         3.75630000e+04,  4.90300000e+01,  1.04699906e+02,         1.00000000e+00,  5.71880000e+03,  7.04600000e-01,         2.16130000e+00,  5.72310000e+00, -3.00900000e-01,         1.32520000e+00,  1.32520000e+00],       [ 0.00000000e+00,  3.46000000e+02,  2.24756530e+02,         1.27403000e+05,  2.22800000e+02,  8.78155326e-01,         1.00000000e+00,  5.70805000e+03, -9.63100000e-01,         4.70000000e-01,  6.79200000e+00,  2.50200000e-01,         5.96300000e+00,  5.96300000e+00],       [ 0.00000000e+00,  3.09000000e+02,  4.50972829e+01,         3.50000000e+04,  4.33000000e+01,  4.15076872e+00,         0.00000000e+00,  5.67600000e+03,  9.75300000e-01,         6.17300000e-01,  6.62310000e+00,  4.01550000e+01,         4.19152000e+01,  4.19152000e+01],       [ 0.00000000e+00,  3.46000000e+02,  2.26916384e+02,         1.00000000e+05,  2.24950000e+02,  8.74142476e-01,         1.00000000e+00,  5.65215000e+03, -1.88000000e-01,         7.87500000e-01,  7.94750000e+00, -3.13200000e-01,         6.47550000e+00,  6.47550000e+00],       [ 0.00000000e+00,  3.46000000e+02,  2.20191000e+02,         2.75000000e+05,  2.31950000e+02, -5.06962715e+00,         1.00000000e+00,  5.70460000e+03, -8.96800000e-01,        -3.83300000e-01,  5.95260000e+00,  5.14140000e+00,         7.58010000e+00,  7.58010000e+00],       [ 0.00000000e+00,  2.18000000e+02,  1.69836215e+02,         6.00000000e+04,  1.73550000e+02, -2.13989340e+00,         1.00000000e+00,  5.74695000e+03,  2.21600000e-01,        -2.66200000e-01,  5.37060000e+00,  4.42260000e+00,         1.03538000e+01,  1.03538000e+01],       [ 0.00000000e+00,  9.10000000e+01,  5.03828125e+01,         3.20000000e+04,  4.85000000e+01,  3.88208763e+00,         0.00000000e+00,  5.71880000e+03,  7.04600000e-01,         2.16130000e+00,  5.72310000e+00,  7.97870000e+00,         1.43018000e+01,  1.43018000e+01],       [ 0.00000000e+00,  1.82000000e+02,  3.66395435e+01,         5.40000000e+04,  3.63500000e+01,  7.96543380e-01,         1.00000000e+00,  5.67605000e+03, -1.73390000e+00,        -2.81400000e-01,  8.15350000e+00, -2.00800000e+00,         1.52570000e+00,  1.52570000e+00],       [ 0.00000000e+00,  3.43000000e+02,  2.31617647e+01,         1.70000000e+04,  2.16500000e+01,  6.98274691e+00,         0.00000000e+00,  5.67600000e+03,  9.75300000e-01,         6.17300000e-01,  6.62310000e+00,  2.45333000e+01,         2.12987000e+01,  2.12987000e+01],       [ 0.00000000e+00,  2.18000000e+02,  1.63871636e+02,         1.19500000e+05,  1.61950000e+02,  1.18656127e+00,         1.00000000e+00,  5.64800000e+03, -2.77500000e-01,        -1.23880000e+00,  7.32370000e+00, -6.76500000e-01,        -7.47950000e+00, -7.47950000e+00],       [ 0.00000000e+00,  3.46000000e+02,  2.24871313e+02,         7.25970000e+04,  2.22800000e+02,  9.29673637e-01,         1.00000000e+00,  5.70805000e+03, -9.63100000e-01,         4.70000000e-01,  6.79200000e+00,  2.50200000e-01,         5.96300000e+00,  5.96300000e+00],       [ 0.00000000e+00,  5.70000000e+01,  1.02000000e+01,         2.35008000e+05,  1.05000000e+01, -2.85714286e+00,         1.00000000e+00,  5.70460000e+03, -8.96800000e-01,        -3.83300000e-01,  5.95260000e+00, -3.77360000e+00,         2.51260000e+00,  2.51260000e+00],       [ 0.00000000e+00,  2.10000000e+01,  1.19055525e+01,         4.15000000e+05,  1.14000000e+01,  4.43467132e+00,         1.00000000e+00,  5.67605000e+03, -1.73390000e+00,        -2.81400000e-01,  8.15350000e+00, -1.69065000e+01,        -2.84830000e+01, -2.84830000e+01]]))

现在,我尝试在二维平面上绘制这些聚类,结果生成了这个图表:enter image description here

现在,我不太确定为什么我的聚类连同各种数据点都被绘制成了一条直线,每个坐标的X轴值都是0。我在这里遗漏了什么吗?如果我想将它们聚类成不同的聚类,我应该以不同的方式预处理我的数据集吗?

编辑1:用于绘制上述图表的代码(clf是我模型对象的名称):

labels = clf.labels_cluster_centers = clf.cluster_centers_n_clusters_ = len(np.unique(labels))colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')for k, col in zip(range(n_clusters_), colors):    my_members = labels == k    cluster_center = cluster_centers[k]    plt.plot(X[my_members, 0], X[my_members, 1], col + '.')    plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,             markeredgecolor='k', markersize=14)plt.title('估计的聚类数量: %d' % n_clusters_)plt.show()

回答:

由于你的数据有14个特征,均值漂移算法会尝试在14维空间中识别“块”/聚类,并在你的4328个数据点中找到了29个中心。所以你的聚类输出描述了14维空间中的29个点 – 因此形状是29×14 – 这在二维图表中很难可视化。

在绘图时,你目前只使用了聚类输出的前两个维度(plot(X[my_members, 0], X[my_members, 1], ...),由于第一维度似乎都是零,所以绘制的点最终形成了一条直线。

如果你只对聚类结果感兴趣,你已经在clf.labels_输出中得到了结果,这应该是一个4328×1的向量。

为了可视化高维点,你可以尝试将聚类数据分成几个子图(或许7个二维图),或者尝试以某种方式减少维度(你可以从删除第一列开始,因为所有值都是相同的 – 零)

在二维(或三维图)中可视化更高维度数据的另一种方法是t-SNE,或许你应该看看这个。它在scikit-learn中也有提供,并且有一个简短的介绍在这个Google Talk

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注