我正在通过使用波士顿房价数据集学习scikit-learn
和机器学习。
# 我分割了初始数据集('housing_X'和'housing_y')
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(housing_X, housing_y, test_size=0.25, random_state=33)
# 我对这两个数据集进行了缩放
from sklearn.preprocessing import StandardScaler
scalerX = StandardScaler().fit(X_train)
scalery = StandardScaler().fit(y_train)
X_train = scalerX.transform(X_train)
y_train = scalery.transform(y_train)
X_test = scalerX.transform(X_test)
y_test = scalery.transform(y_test)
# 我创建了模型
from sklearn import linear_model
clf_sgd = linear_model.SGDRegressor(loss='squared_loss', penalty=None, random_state=42)
train_and_evaluate(clf_sgd,X_train,y_train)
基于这个新模型clf_sgd
,我尝试根据X_train
的第一个实例来预测y
。
X_new_scaled = X_train[0]
print (X_new_scaled)
y_new = clf_sgd.predict(X_new_scaled)
print (y_new)
然而,结果对我来说相当奇怪(1.34032174
,而不是20-30
,这是房价的范围)
[-0.32076092 0.35553428 -1.00966618 -0.28784917 0.87716097 1.28834383 0.4759489 -0.83034371 -0.47659648 -0.81061061 -2.49222645 0.35062335 -0.39859013]
[ 1.34032174]
我猜测这个1.34032174
的值应该被重新缩放,但我尝试找出如何做却没有成功。欢迎任何建议。非常感谢。
回答:
你可以使用scalery
对象的inverse_transform
方法:
y_new_inverse = scalery.inverse_transform(y_new)