你好,我正在尝试将文本分类为4个类别,并且我想不仅打印预测结果,还要打印文本属于每个类别的概率。
在阅读了Scikit-learn的文档后,我认为我应该使用predict_proba
,到目前为止我的代码是这样的:
# -*- coding: utf-8 -*-#!/usr/bin/env pythonimport sysimport osimport numpy as npfrom sklearn.feature_extraction.text import CountVectorizerfrom sklearn.naive_bayes import MultinomialNBfrom sklearn.pipeline import Pipelinefrom sklearn.metrics import confusion_matrix, f1_scorefrom sklearn.datasets import load_filesfrom sklearn.svm import SVCfrom sklearn.feature_extraction.text import TfidfTransformerfrom sklearn.naive_bayes import MultinomialNBfrom sklearn.metrics import accuracy_scorefrom sklearn.metrics import classification_reportstring = sys.argv[1] #我将从控制台传递要预测的文本sets = load_files('scikit') #加载训练集count_vect = CountVectorizer(analyzer='char_wb', ngram_range=(0, 3), min_df=1) X_train_counts = count_vect.fit_transform(sets.data) tf_transformer = TfidfTransformer(use_idf=False).fit(X_train_counts)X_train_tf = tf_transformer.transform(X_train_counts)tfidf_transformer = TfidfTransformer()X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)clf = MultinomialNB().fit(X_train_tfidf, sets.target)docs_new = [string]X_new_counts = count_vect.transform(docs_new)X_new_tfidf = tfidf_transformer.transform(X_new_counts)predicted = clf.predict(X_new_tfidf)for doc, category in zip(docs_new, predicted): print('%r => %s' % (doc, sets.target_names[category])) #打印预测结果,并且它是正确的 print(clf.predict_proba(sets.target_names)) #尝试获取所有类别的概率
遗憾的是,输出结果是这样的:ValueError: objects are not aligned
,我尝试了很多不同的方法来实现这一点,并且在网上搜索了很多,但似乎都没有效果。任何建议都将不胜感激。谢谢@***。
回答:
predict_proba()函数的输入应该与你给predict()方法的输入完全相同。因此,你可以用以下方式获取概率:
clf.predict_proba(X_new_tfidf)