我正在尝试使用Anaconda 2.7中的scikit learn 0.17来解决一个多标签分类问题。以下是我的代码
import pandas as pdimport pickleimport refrom sklearn.cross_validation import train_test_splitfrom sklearn.metrics.metrics import classification_report, accuracy_score, confusion_matrixfrom nltk.stem import WordNetLemmatizerfrom sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.naive_bayes import MultinomialNB as MNBfrom sklearn.pipeline import Pipelinefrom sklearn.grid_search import GridSearchCVtraindf = pickle.load(open("train.pkl","rb"))X, y = traindf['colC'], traindf['colB'].as_matrix()Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=0.7)pip = Pipeline([('vect', TfidfVectorizer( analyzer='word', binary=False, decode_error='ignore', dtype=<type 'numpy.int64'>, encoding=u'utf-8', input=u'content', lowercase=True, max_df=0.25, max_features=None, min_df=1, ngram_range=(1, 1), norm=u'l2', preprocessor=None, smooth_idf=True, stop_words='english', strip_accents=None, sublinear_tf=True, token_pattern=u'(?u)\\b\\w\\w+\\b', tokenizer=nltk.data.load('tokenizers/punkt/english.pickle'), use_idf=True, vocabulary=None)),('clf', LogisticRegression( C=10, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='multinomial', n_jobs=1, penalty='l2', random_state=None, solver='lbfgs', tol=0.0001, verbose=0, warm_start=False)) ])parameters = {}gridSearchTS = GridSearchCV(pip,parameters,n_jobs=3, verbose=1, scoring='accuracy')gridSearchTS.fit(Xtrain, ytrain)predictions = gridSearchTS.predict(Xtest)print ('Accuracy:', accuracy_score(ytest, predictions))print ('Confusion Matrix:', confusion_matrix(ytest, predictions))print ('Classification Report:', classification_report(ytest, predictions))testdf = pickle.load(open("test.pkl","rb"))predictions=gridSearchTS.predict(testdf['colC'])testdf['colB'] = predictionsprint(testdf.info())testdf.to_csv("res.csv")
我的数据看起来像这样
训练数据
colC colBsome text [list of tags]some text [list of tags]
测试数据
colC some text some text
但我遇到了以下错误
raise ValueError('You appear to be using a legacy multi-label data'ValueError: You appear to be using a legacy multi-label data representation. Sequence of sequences are no longer supported; use a binary array or sparse matrix instead.
这是什么意思?
这是完整的堆栈跟踪
Traceback (most recent call last): File "X:\asd.py", line 34, in getTags gridSearchTS.fit(Xtrain, ytrain) File "X:\popol\Continuum\Anaconda2\lib\site-packages\sklearn\grid_search.py", line 804, in fit return self._fit(X, y, ParameterGrid(self.param_grid)) File "X:\popol\Continuum\Anaconda2\lib\site-packages\sklearn\grid_search.py", line 532, in _fit cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) File "X:\popol\Continuum\Anaconda2\lib\site-packages\sklearn\cross_validation.py", line 1676, in check_cv if type_of_target(y) in ['binary', 'multiclass']: File "X:\popol\Continuum\Anaconda2\lib\site-packages\sklearn\utils\multiclass.py", line 251, in type_of_target raise ValueError('You appear to be using a legacy multi-label data'ValueError: You appear to be using a legacy multi-label data representation. Sequence of sequences are no longer supported; use a binary array or sparse matrix instead.
我该如何解决这个问题?我需要更改数据格式吗?为什么gridSearchTS.fit(Xtrain, ytrain)会失败?如何使X和y适合fit函数?
编辑
我尝试了
from sklearn.preprocessing import MultiLabelBinarizer y=MultiLabelBinarizer().fit_transform(y) random_state = np.random.RandomState(0) # Split into training and test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=random_state) # Run classifier from sklearn import svm, datasets classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True, random_state=random_state)) y_score = classifier.fit(X_train, y_train).decision_function(X_test)
但现在我得到
ValueError: could not convert string to float: <value of ColC here>
在
y_score = classifier.fit(X_train, y_train).decision_function(X_test)
我是否也需要对X进行二值化处理?为什么我需要将X维度转换为浮点数?
回答:
文档中给出了以下示例:
>>> from sklearn.preprocessing import MultiLabelBinarizer>>> y = [[2, 3, 4], [2], [0, 1, 3], [0, 1, 2, 3, 4], [0, 1, 2]]>>> MultiLabelBinarizer().fit_transform(y)array([[0, 0, 1, 1, 1], [0, 0, 1, 0, 0], [1, 1, 0, 1, 0], [1, 1, 1, 1, 1], [1, 1, 1, 0, 0]])
MultiLabelBinarizer.fit_transform
接受您的标记集并可以输出二进制数组。输出应该可以传递给您的fit函数。