我已经将模型和数据设置到相同的设备上,但总是会引发这样的错误:
RuntimeError: 输入类型(torch.cuda.FloatTensor)和权重类型(torch.FloatTensor)应相同
以下是我的训练代码,希望你能解答这个问题。谢谢!
def train(train_img_path, train_label_path, pths_path, interval, log_file): file_num = len(os.listdir(train_img_path)) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") net = EAST(extractor=extractor, geometry_mode=geometry_mode, pretrained=True) net = net.to(device) trainset = custom_dataset(train_img_path, train_label_path) train_loader = data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers, drop_last=True) optimizer = optim.SGD(net.parameters(), lr=initial_lr, momentum=momentum, weight_decay=weight_decay_sgd) criterion = Loss(weight_geo, weight_angle, geometry_mode="RBOX") net.train() epoch_loss = 0. for epoch in range(max_epoch): epoch_time = time.time() for i, (img, score_gt, geo_gt, ignored_map) in enumerate(train_loader): start_time = time.time() img, score_gt, geo_gt, ignored_map = img.to(device), score_gt.to(device),\ geo_gt.to(device), ignored_map.to(device) score_pred, geo_pred = net(img) total_loss, score_loss, loss_AABB, loss_angle = criterion(score_pred, geo_pred, score_gt, geo_gt, ignored_map) epoch_loss += total_loss.item() optimizer.zero_grad() total_loss.backward() optimizer.step()
回答:
我怀疑你的损失函数内部有自己的参数,因此你也应该
criterion = Loss(weight_geo, weight_angle, geometry_mode="RBOX").to(device)
如果你能提供完整的错误追踪,指出是哪一行确切地引发了错误,就更容易发现问题所在了。