我正在尝试使用Keras 2.2.0
和tensorflow 1.9.0
构建一个图像分类器
我遇到了如下错误:
str(data_shape))ValueError: Error when checking input: expected conv2d_1_input to have shape (1, 224, 224) but got array with shape (224, 224, 3)
这是我的代码:
train_datagen=ImageDataGenerator(rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest')validation_datagen=ImageDataGenerator(rescale=1./255)train_generator = train_datagen.flow_from_directory('/media/centura/DANISH/mobile backup/moles/train/',class_mode='binary',target_size=(224, 224),batch_size=batch_size)validation_generator = validation_datagen.flow_from_directory('/media/centura/DANISH/mobile backup/moles/test/',class_mode='binary',target_size=(224, 224),batch_size=batch_size)#Data Dimensionsimg_rows,img_cols=224,224input_shape1=(1,img_rows,img_cols)#initialising the modelmodel=Sequential()#layer 1model.add(Conv2D(filters=32, kernel_size=(3,3), strides=(1, 1), padding='same',input_shape=input_shape1,data_format="channels_last"))model.add(BatchNormalization())model.add(Activation('relu'))#model.add(AveragePooling2D(pool_size=(2,2)))model.add(Dropout(0.25))#fully connected first layermodel.add(Flatten())model.add(Dense(500,use_bias=False))model.add(BatchNormalization())model.add(Activation('relu'))model.add(Dropout(0.25)) #Fully connected final layermodel.add(Dense(1)) model.add(Activation('sigmoid')) tensorboard=TensorBoard(log_dir='logs/{}'.format(name))model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])#model.summary()model.fit_generator(train_generator,epochs=50,validation_data=validation_generator,callbacks=[tensorboard])
我认为错误来自于train_generator
。我在Stack Overflow上搜索了类似的问题,找到了某些解决方案,但对我来说不起作用。如果图像是通过.flow_from_directory
调用的,我该如何更改图像的尺寸?
回答:
让我们逐步分解错误,看看它在告诉我们什么:
Error when checking input:
所以它与模型的输入数据和输入层有关。
expected conv2d_1_input to have shape (1, 224, 224)
如果我们查看第一个卷积层的代码,我们会看到:
Conv2D(..., input_shape=input_shape1, ...)
而你定义的input_shape1
的值是(1,img_rows,img_cols)
,也就是(1, 224, 224)
。但是:
but got array with shape (224, 224, 3)
这意味着train_generator
生成的图像的形状是(224, 224, 3)
(这是正确且预期的)。
因此,我们看到生成的图像的形状和input_shape
参数给定的形状必须一致。因此,你需要修改input_shape1
的值如下:
input_shape1=(img_rows, img_cols, 3)
这正是卷积层期望的输入形状(即(image_height, image_width, image_channels)
)。