我正在尝试实现DeepMind在这篇论文中介绍的深度Q学习算法:
https://arxiv.org/pdf/1312.5602.pdf
我用它来训练一个学习玩乒乓球的智能体,但似乎没有效果(即使训练了2小时也没有看到任何改进)。这是我的代码:
import gymimport universeimport numpy as npimport kerasfrom keras.models import Sequentialfrom keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Activationfrom keras.models import load_modelimport randomenv = gym.make('gym-core.Pong-v0')env.configure(remotes=1)def num2str(number, obs): number = np.argmax(number) if number == 0: action = [[('KeyEvent', 'ArrowRight', False), ('KeyEvent', 'ArrowLeft', True)] for ob in obs] elif number == 1: action = [[('KeyEvent', 'ArrowLeft', False), ('KeyEvent', 'ArrowRight', True)] for ob in obs] return actiondef preprocess(original_obs): obs = original_obs obs = np.array(obs)[0]['vision'] obs = np.delete(obs, np.s_[195:769], axis=0) obs = np.delete(obs, np.s_[0:35], axis=0) obs = np.delete(obs, np.s_[160:1025], axis=1) obs = np.mean(obs, axis=2) obs = obs[::2,::2] obs = np.reshape(obs, (80, 80, 1)) return obsmodel = Sequential()model.add(Conv2D(32, kernel_size = (8, 8), strides = (4, 4), border_mode='same', activation='relu', init='uniform', input_shape = (80, 80, 4)))model.add(MaxPooling2D(pool_size = (2, 2)))model.add(Conv2D(64, kernel_size = (2, 2), strides = (2, 2)))model.add(Conv2D(64, kernel_size = (3, 3), strides = (1, 1)))model.add(Flatten())model.add(Dense(256, init='uniform', activation='relu'))model.add(Dense(2, init='uniform', activation='linear'))model.compile(loss='mse', optimizer='adam', metrics=['accuracy'])init_observe_time = 500D = []e = 1.0e_threshold = 0.05e_decay = 0.01gamma = 0.99batch_size = 15frequency = 10Q_values = np.array([0, 0])obs = env.reset()while True: obs = env.step(num2str(np.array([random.randint(0, 1) for i in range(0, 2)]), obs))[0] if obs != [None]: breakx_t1 = preprocess(obs)s_t1 = np.stack((x_t1, x_t1, x_t1, x_t1), axis = 2)s_t1 = np.reshape(s_t1, (80, 80, 4))t = 0while True: print("Time since last start: ", t) a_t = np.zeros(2) if random.random() < e: a_index = random.randint(0, 1) a_t[a_index] = 1 else: Q_values = model.predict(np.array([s_t1]))[0] a_index = np.argmax(Q_values) a_t[a_index] = 1 print("Q Values: ", Q_values) print("action taken: ", np.argmax(a_t)) print("epsilon: ", e) if e > e_threshold: e -= e_decay obs, r_t, done, info = env.step(num2str(a_t, obs)) if obs == [None]: continue x_t2 = preprocess(obs) print(x_t2.shape, s_t1[:,:,0:3].shape) s_t2 = np.append(x_t2, s_t1[:,:,0:3], axis = 2) D.append((s_t1, a_t, r_t, s_t2, done)) if t > init_observe_time and t%frequency == 0: minibatch = random.sample(D, batch_size) s1_batch = [i[0] for i in minibatch] a_batch = [i[1] for i in minibatch] r_batch = [i[2] for i in minibatch] s2_batch = [i[3] for i in minibatch] q_batch = model.predict(np.array(s2_batch)) y_batch = np.zeros((batch_size, 2)) y_batch = model.predict(np.array(s1_batch)) print("Q batch: ", q_batch) print("y batch: ", y_batch) for i in range(0, batch_size): if (minibatch[i][4]): y_batch[i][np.argmax(a_batch[i])] = r_batch[i][0] else: y_batch[i][np.argmax(a_batch[i])] = r_batch[i][0] + gamma * np.max(q_batch[i]) model.train_on_batch(np.array(s1_batch), y_batch) s_t1 = s_t2 t += 1 env.render()
有没有人能提供一些建议,让它正常工作?
回答:
- 你的第二个和第三个
Conv2D
层似乎缺少了relu
激活函数。 - 你的
epsilon
(或e
)衰减得太快了。仅在95个时间步后,它就会降到0.05
。我没能快速找到2013年论文中他们是如何做的,但在2015年的论文中,他们将epsilon
从1
衰减到0.1
,用了100万帧的时间。
这些是我立刻注意到的问题。我建议你从修复这些问题开始。