如何正确更新spaCy中的模型?

我想用新的实体更新模型。我正在加载“pt”NER模型,并尝试更新它。在做任何事情之前,我尝试了这句话:“meu nome é Mário e hoje eu vou para academia”。(这句话的英文是“my name is Mário and today I’m going to go to gym”)。在整个过程开始之前,我得到了以下结果:

Entities [('Mário', 'PER')]Tokens [('meu', '', 2), ('nome', '', 2), ('é', '', 2), ('Mário', 'PER', 3), ('e', '', 2), ('hoje', '', 2), ('eu', '', 2), ('vou', '', 2), ('pra', '', 2), ('academia', '', 2)]

好的,Mário是一个名字,这是正确的。但我想让模型识别“hoje(今天)”为DATE,于是我运行了下面的脚本。

运行脚本后,我尝试了同样的句子,得到了以下结果:

Entities [('hoje', 'DATE')]Tokens [('meu', '', 2), ('nome', '', 2), ('é', '', 2), ('Mário', '', 2), ('e', '', 2), ('hoje', 'DATE', 3), ('eu', '', 2), ('vou', '', 2), ('pra', '', 2), ('academia', '', 2)]

模型识别“hoje”为DATE,但完全忘记了Mário作为Person的识别。

from __future__ import unicode_literals, print_functionimport placimport randomfrom pathlib import Pathimport spacyfrom spacy.util import minibatch, compounding# training dataTRAIN_DATA = [    ("Infelizmente não, eu briguei com meus amigos hoje", {"entities": [(45, 49, "DATE")]}),    ("hoje foi um bom dia.", {"entities": [(0, 4, "DATE")]}),    ("ah não sei, hoje foi horrível", {"entities": [(12, 16, "DATE")]}),    ("hoje eu briguei com o Mário", {"entities": [(0, 4, "DATE")]})]@plac.annotations(    model=("Model name. Defaults to blank 'en' model.", "option", "m", str),    output_dir=("Optional output directory", "option", "o", Path),    n_iter=("Number of training iterations", "option", "n", int),)def main(model="pt", output_dir="/model", n_iter=100):    """Load the model, set up the pipeline and train the entity recognizer."""    if model is not None:        nlp = spacy.load(model)  # load existing spaCy model        print("Loaded model '%s'" % model)    else:        nlp = spacy.blank("pt")  # create blank Language class            print("Created blank 'en' model")    doc = nlp("meu nome é Mário e hoje eu vou pra academia")    print("Entities", [(ent.text, ent.label_) for ent in doc.ents])    print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])    # create the built-in pipeline components and add them to the pipeline    # nlp.create_pipe works for built-ins that are registered with spaCy    if "ner" not in nlp.pipe_names:        ner = nlp.create_pipe("ner")        nlp.add_pipe(ner, last=True)    # otherwise, get it so we can add labels    else:        ner = nlp.get_pipe("ner")    # add labels    for _, annotations in TRAIN_DATA:        for ent in annotations.get("entities"):            ner.add_label(ent[2])    # get names of other pipes to disable them during training    other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"]    with nlp.disable_pipes(*other_pipes):  # only train NER        # reset and initialize the weights randomly – but only if we're        # training a new model        if model is None:            nlp.begin_training()        for itn in range(n_iter):            random.shuffle(TRAIN_DATA)            losses = {}            # batch up the examples using spaCy's minibatch            batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))            for batch in batches:                texts, annotations = zip(*batch)                nlp.update(                    texts,  # batch of texts                    annotations,  # batch of annotations                    drop=0.5,  # dropout - make it harder to memorise data                    losses=losses,                )            print("Losses", losses)    # test the trained model   # for text, _ in TRAIN_DATA:    doc = nlp("meu nome é Mário e hoje eu vou pra academia")    print("Entities", [(ent.text, ent.label_) for ent in doc.ents])    print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])    # save model to output directory    if output_dir is not None:        output_dir = Path(output_dir)        if not output_dir.exists():            output_dir.mkdir()        nlp.to_disk(output_dir)        print("Saved model to", output_dir)        # test the saved model        print("Loading from", output_dir)        nlp2 = spacy.load(output_dir)        # for text, _ in TRAIN_DATA:        #     doc = nlp2(text)        #     print("Entities", [(ent.text, ent.label_) for ent in doc.ents])        #     print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])

回答:

在训练数据中,你需要提到“Mario”为“PER”。如果你遗漏了,模型会从新的训练数据中学习,将“Mario”排除在“PER”之外。

(注意:在训练数据中,你应该提到句子中存在的所有实体,而不仅仅是新的实体。)

Related Posts

在使用k近邻算法时,有没有办法获取被使用的“邻居”?

我想找到一种方法来确定在我的knn算法中实际使用了哪些…

Theano在Google Colab上无法启用GPU支持

我在尝试使用Theano库训练一个模型。由于我的电脑内…

准确性评分似乎有误

这里是代码: from sklearn.metrics…

Keras Functional API: “错误检查输入时:期望input_1具有4个维度,但得到形状为(X, Y)的数组”

我在尝试使用Keras的fit_generator来训…

如何使用sklearn.datasets.make_classification在指定范围内生成合成数据?

我想为分类问题创建合成数据。我使用了sklearn.d…

如何处理预测时不在训练集中的标签

已关闭。 此问题与编程或软件开发无关。目前不接受回答。…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注