为了将Keras模型作为标准TensorFlow操作的一部分使用,我创建了一个模型,使用特定的占位符作为输入。
然而,当我尝试使用model.predict时,遇到了以下错误:
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder' with dtype float and shape [100,84,84,4] [[Node: Placeholder = Placeholder[dtype=DT_FLOAT, shape=[100,84,84,4], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
我的代码如下所示:
from keras.layers import Convolution2D, Dense, Inputfrom keras.models import Modelfrom keras.optimizers import Nadamfrom keras.losses import mean_absolute_errorfrom keras.activations import reluimport tensorflow as tfimport numpy as npimport gymstate_size = [100, 84, 84, 4]input_tensor = tf.placeholder(dtype=tf.float32, shape=state_size)inputL = Input(tensor=input_tensor)h1 = Convolution2D(filters=32, kernel_size=(5,5), strides=(4,4), activation=relu) (inputL)h2 = Convolution2D(filters=64, kernel_size=(3,3), strides=(2,2), activation=relu) (h1)h3 = Convolution2D(filters=64, kernel_size=(3,3), activation=relu) (h2)h4 = Dense(512, activation=relu) (h3)out = Dense(18) (h4)model = Model(inputL, out)opt = Nadam()disc_rate=0.99sess = tf.Session()dummy_input = np.ones(shape=state_size)model.compile(opt, mean_absolute_error)writer = tf.summary.FileWriter('./my_graph', sess.graph)writer.close()print(out)print(model.predict({input_tensor: dummy_input}))
我还尝试过直接输入(没有使用字典,只传递值) – 得到的是相同的异常。然而,我可以让模型像下面这样工作:
print(sess.run( model.output, {input_tensor: dummy_input }))
有没有办法让我仍然可以使用Keras的常规.predict方法?
回答:
以下方法有效(我们需要初始化全局变量):
sess.run(tf.global_variables_initializer()) # 初始化 print(sess.run([model.output], feed_dict={input_tensor: dummy_input}))