我在使用句子转换器进行语义搜索,但有时它无法理解上下文含义并返回错误的结果,例如 BERT在意大利语上下文/语义搜索中的问题
默认情况下,句子的嵌入向量有78列,那么我该如何增加这个维度,以便它能更深入地理解上下文含义呢?
代码:
# 加载BERT模型from sentence_transformers import SentenceTransformermodel = SentenceTransformer('bert-base-nli-mean-tokens')# 设置语料库# 语料库是一个按句子分割的文档列表sentences = ['Absence of sanity', 'Lack of saneness', 'A man is eating food.', 'A man is eating a piece of bread.', 'The girl is carrying a baby.', 'A man is riding a horse.', 'A woman is playing violin.', 'Two men pushed carts through the woods.', 'A man is riding a white horse on an enclosed ground.', 'A monkey is playing drums.', 'A cheetah is running behind its prey.']# 每个句子被编码为一个78列的1-D向量sentence_embeddings = model.encode(sentences) ### 如何增加向量维度print('Sample BERT embedding vector - length', len(sentence_embeddings[0]))print('Sample BERT embedding vector - note includes negative values', sentence_embeddings[0])
回答:
遗憾的是,唯一有意义地增加嵌入维度的方法是重新训练模型。:(
然而,这可能不是你所需要的…也许你应该考虑微调一个模型:
我建议你查看一下来自UKPLabs的sentence-transformers。他们为超过100种语言提供了预训练的句子嵌入模型。最棒的是,你可以微调这些模型。
祝你好运!