我有一个包含多个标签的数据集,我希望定义一个依赖于这些标签的损失。数据集中的标签是以字典形式存储的,例如:
y = tf.data.Dataset.from_tensor_slices({'values': [1, 2, 3], 'symbols': [4, 5, 6]})
然后我想为每个标签定义一个损失,以便之后对这些损失进行某种组合。我尝试这样定义损失:
def model_loss(y, y_): return tf.losses.SparseCategoricalCrossentropy(from_logits=False, name='values_xent')(y['values'], y_)
然而,当我拟合模型时,它会给我以下错误:
TypeError: Only integers, slices (`:`), ellipsis (`...`), tf.newaxis (`None`) and scalar tf.int32/tf.int64 tensors are valid indices, got 'values'
所以似乎我不能这样做y['values']
。我该如何在损失函数中访问这些值呢?提前感谢。
编辑
我想实现的目标是这样的:
import tensorflow as tfimport numpy as np# 样本ds_x = tf.data.Dataset.from_tensor_slices(np.random.randn(5, 5))# 标签ds_y = tf.data.Dataset.from_tensor_slices({'l1': np.arange(5), 'l2':np.arange(5)})# 样本 + 标签ds = tf.data.Dataset.zip((ds_x, ds_y))# 模型input_ = tf.keras.Input(shape=(5,))x = tf.keras.layers.Dense(30, activation='relu')(input_)x1 = tf.keras.layers.Dense(5, activation='softmax')(x)x2 = tf.keras.layers.Dense(5, activation='softmax')(x)model = tf.keras.Model(inputs=input_, outputs={'l1':x1, 'l2':x2})# 损失def model_loss(y, y_): res = 3 * tf.losses.SparseCategoricalCrossentropy()(y['l1'], y_['l1']) res += tf.losses.SparseCategoricalCrossentropy()(y['l2'], y_['l2']) return res# 编译和训练model.compile(optimizer='adam', loss=model_loss)model.fit(ds.batch(5), epochs=5)
回答:
一旦你做了一些对Keras来说不完全正常的事情,我建议使用自定义训练循环。这样你就可以控制训练过程的每一个步骤。
我这样做了,并且不需要改变你的损失函数。
import tensorflow as tfimport numpy as npds_x = tf.data.Dataset.from_tensor_slices(np.random.randn(5, 5).astype(np.float32))ds_y = tf.data.Dataset.from_tensor_slices({'l1': np.arange(5), 'l2':np.arange(5)})ds = tf.data.Dataset.zip((ds_x, ds_y)).batch(2)input_ = tf.keras.Input(shape=[5])x = tf.keras.layers.Dense(30, activation='relu')(input_)x1 = tf.keras.layers.Dense(5, activation='softmax')(x)x2 = tf.keras.layers.Dense(5, activation='softmax')(x)model = tf.keras.Model(inputs=input_, outputs={'l1':x1, 'l2':x2})def model_loss(y, y_): res = 3 * tf.losses.SparseCategoricalCrossentropy()(y['l1'], y_['l1']) res += tf.losses.SparseCategoricalCrossentropy()(y['l2'], y_['l2']) return restrain_loss = tf.keras.metrics.Mean()optimizer = tf.keras.optimizers.Adam()for i in range(25): for x, y in ds: with tf.GradientTape() as tape: out = model(x) loss = model_loss(y, out) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) train_loss(loss) print(f'Epoch {i} Loss: {train_loss.result():=4.4f}') train_loss.reset_states()
Epoch 0 Loss: 6.4170Epoch 1 Loss: 6.3396Epoch 2 Loss: 6.2737Epoch 11 Loss: 5.7191Epoch 12 Loss: 5.6608Epoch 19 Loss: 5.2646Epoch 24 Loss: 4.9896