我在Tensorflow领域是新手,正在进行一个简单的mnist数据集分类示例。我想知道除了准确率和损失之外,如何获得其他指标(例如精确率、召回率等),并且希望能够展示这些指标。以下是我的代码:
from __future__ import absolute_import, division, print_function, unicode_literalsimport tensorflow as tffrom tensorflow.keras.callbacks import ModelCheckpointfrom tensorflow.keras.callbacks import TensorBoardimport os #load mnist datasetmnist = tf.keras.datasets.mnist(x_train, y_train), (x_test, y_test) = mnist.load_data()#create and compile the modelmodel = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ])model.summary()model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])#model checkpoint (only if there is an improvement)checkpoint_path = "logs/weights-improvement-{epoch:02d}-{accuracy:.2f}.hdf5"cp_callback = ModelCheckpoint(checkpoint_path, monitor='accuracy',save_best_only=True,verbose=1, mode='max')#TensorboardNAME = "tensorboard_{}".format(int(time.time())) #name of the model with timestamptensorboard = TensorBoard(log_dir="logs/{}".format(NAME))#train the modelmodel.fit(x_train, y_train, callbacks = [cp_callback, tensorboard], epochs=5)#evaluate the modelmodel.evaluate(x_test, y_test, verbose=2)
由于我只能得到准确率和损失,那么我该如何获取其他指标呢?提前感谢您,如果这是个简单的问题或者已经在别处回答过,我深表歉意。
回答:
我添加另一个回答,因为这是截至2020年3月22日计算这些指标在测试集上最正确和最清晰的方法。
你首先需要做的是创建一个自定义回调,并将你的测试数据发送给它:
import tensorflow as tffrom tensorflow.keras.callbacks import Callbackfrom sklearn.metrics import classification_report class MetricsCallback(Callback): def __init__(self, test_data, y_true): # 应该是你的类别的标签编码 self.y_true = y_true self.test_data = test_data def on_epoch_end(self, epoch, logs=None): # 这里我们获取概率 y_pred = self.model.predict(self.test_data)) # 这里我们获取实际类别 y_pred = tf.argmax(y_pred,axis=1) # 实际的字典 report_dictionary = classification_report(self.y_true, y_pred, output_dict = True) # 仅打印报告 print(classification_report(self.y_true,y_pred,output_dict=False)
在你的主程序中,加载数据集并添加回调:
metrics_callback = MetricsCallback(test_data = my_test_data, y_true = my_y_true)......#train the modelmodel.fit(x_train, y_train, callbacks = [cp_callback, metrics_callback,tensorboard], epochs=5)