我想在cross_val_score
函数中使用调整后的R平方。我尝试使用make_scorer
函数,但它不起作用。
from sklearn.cross_validation import train_test_splitX_tr, X_test, y_tr, y_test = train_test_split(X, Y, test_size=0.2, random_state=0)regression = LinearRegression(normalize=True)from sklearn.metrics.scorer import make_scorerfrom sklearn.metrics import r2_scoredef adjusted_rsquare(y_true,y_pred): adjusted_r_squared = 1 - (1-r2_score(y_true, y_pred))*(len(y_pred)-1)/(len(y_pred)-X_test.shape[1]-1) return adjusted_r_squaredmy_scorer = make_scorer(adjusted_rsquare, greater_is_better=True)score = np.mean(cross_val_score(regression, X_tr, y_tr, scoring=my_scorer,cv=crossvalidation, n_jobs=1))
它抛出了一个错误:
IndexError: positional indexers are out-of-bounds
有没有办法让我使用自定义函数,即adjusted_rsquare
与cross_val_score
一起使用?
回答:
adjusted_rsquare(X,Y)
是一个数字,而非函数,只需像这样创建评分器:
my_scorer = make_scorer(adjusted_rsquare, greater_is_better=True)
你还需要更改评分函数:
def adjusted_rsquare(y_true, y_pred, **kwargs):
这是你应该使用的原型。你需要将实际结果与应有的结果进行比较。