我在进行机器学习,需要在编码的一个方面得到帮助。在我的训练数据中,我有一系列网页的URL以及这些网页的一些特征。我正在对网页文本进行TF-IDF处理,以创建更多的特征。
我提取的一个特征是,对于每个网址,我获取了Google的页面排名。这个值可以是世界上任何一个值,但排名越低,Google认为其质量越“高”。
考虑到我有7000个网址,并且排名可能差异很大(例如,www.google.com可能排名第1,而www.bbc.co.uk可能排名第1,117,其他排名可能会超出我们的7000个URL范围),我该如何标准化这个数值呢?
我如何使用scikit-learn有效地标准化这些数据,以便在我的机器学习算法中使用?我正在运行一个逻辑回归,仅试图预测一个网页是否“优质”。目前我使用的唯一特征是通过对网页文本进行TF-IDF处理创建的特征。理想情况下,我希望将这些特征与我的页面排名特征结合起来,以获得最高的交叉验证分数。
非常感谢!
我们可以假设我的数据是以TSV格式的:
URL GooglePageRank WebsiteText
一行的示例:
http://www.google.com 1 This would be the text of the google webpage.
我想标准化我的排名数据并在我的逻辑回归中使用它。目前,我只使用“WebsiteText”列,对其进行TF-IDF处理,并将其输入到我的逻辑回归中。我想学习如何将这个列与我标准化的GooglePageRank列结合起来,并在我的逻辑回归中使用这两个列 – 我该如何做呢?
这是我目前的代码:
import numpy as np from sklearn import metrics,preprocessing,cross_validation from sklearn.feature_extraction.text import TfidfVectorizer import sklearn.linear_model as lm import pandas as p loadData = lambda f: np.genfromtxt(open(f,'r'), delimiter=' ') print "loading data.." traindata = list(np.array(p.read_table('train.tsv'))[:,2]) testdata = list(np.array(p.read_table('test.tsv'))[:,2]) y = np.array(p.read_table('train.tsv'))[:,-1] tfv = TfidfVectorizer(min_df=3, max_features=None, strip_accents='unicode', analyzer='word',token_pattern=r'\w{1,}',ngram_range=(1, 2), use_idf=1,smooth_idf=1,sublinear_tf=1) rd = lm.LogisticRegression(penalty='l2', dual=True, tol=0.0001, C=1, fit_intercept=True, intercept_scaling=1.0, class_weight=None, random_state=None) X_all = traindata + testdata lentrain = len(traindata) print "fitting pipeline" tfv.fit(X_all) print "transforming data" X_all = tfv.transform(X_all) X = X_all[:lentrain] X_test = X_all[lentrain:] print "20 Fold CV Score: ", np.mean(cross_validation.cross_val_score(rd, X, y, cv=20, scoring='roc_auc')) print "training on full data" rd.fit(X,y) pred = rd.predict_proba(X_test)[:,1] testfile = p.read_csv('test.tsv', sep="\t", na_values=['?'], index_col=1) pred_df = p.DataFrame(pred, index=testfile.index, columns=['label']) pred_df.to_csv('benchmark.csv') print "submission file created.."
*编辑 : *
这是我目前正在运行的代码 –
from sklearn import metrics,preprocessing,cross_validationfrom sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.feature_extraction import DictVectorizerimport sklearn.preprocessingimport sklearn.linear_model as lmimport pandas as ploadData = lambda f: np.genfromtxt(open(f,'r'), delimiter=',')print "loading data.."#load train/test data for TF-IDF -- I know this is bad practice, but keeping it this way for the moment!traindata = list(np.array(p.read_csv('FinalCSVFin.csv', delimiter=";"))[:,2])testdata = list(np.array(p.read_csv('FinalTestCSVFin.csv', delimiter=";"))[:,2])#load labelsy = np.array(p.read_csv('FinalCSVFin.csv', delimiter=";"))[:,-2]#Load Integer values and append togetherAllAlexaInfo = np.array(p.read_csv('FinalCSVFin.csv', delimiter=";"))[:,-1]#make tfidf objecttfv = TfidfVectorizer(min_df=1, max_features=None, strip_accents='unicode', analyzer='word',token_pattern=r'\w{1,}',ngram_range=(1, 2), use_idf=1,smooth_idf=1,sublinear_tf=1)div = DictVectorizer()X = []X_all = traindata + testdatalentrain = len(traindata)# fit/transform the TfidfVectorizer on the training datavect = tfv.fit_transform(X_all) #bad practice, but using this for the moment!for i, alexarank in enumerate(AllAlexaInfo): feature_dict = {'alexarank': AllAlexaInfo} # get ith row of the tfidf matrix (corresponding to sample) row = vect.getrow(i) # filter the feature names corresponding to the sample all_words = tfv.get_feature_names() words = [all_words[ind] for ind in row.indices] # associate each word (feature) with its corresponding score word_score = dict(zip(words, row.data)) # concatenate the word feature/score with the datamining feature/value X.append(dict(word_score.items() + feature_dict.items()))div.fit_transform(X) # training data based on both Tfidf features and pageranksc = preprocessing.StandardScaler().fit(X)X = sc.transform(X)X_test = X_all[lentrain:]X_test = sc.transform(X_test)print "20 Fold CV Score: ", np.mean(cross_validation.cross_val_score(rd, X, y, cv=20, scoring='roc_auc'))print "training on full data"rd.fit(X,y)pred = rd.predict_proba(X_test)[:,1]testfile = p.read_csv('test.tsv', sep="\t", na_values=['?'], index_col=1)pred_df = p.DataFrame(pred, index=testfile.index, columns=['label'])pred_df.to_csv('benchmark.csv')print "submission file created.."
这似乎永远在运行,而且我认为我有一个“alexarank”值输入不正确的问题 – 我该如何解决这个问题?
回答:
根据您对我评论的回答,我将相应地执行:
tfv = TfidfVectorizer( min_df=3, max_features=None, strip_accents='unicode', analyzer='word', token_pattern=r'\w{1,}', ngram_range=(1, 2), use_idf=1, smooth_idf=1, sublinear_tf=1)div = DictVectorizer()X = []# fit/transform the TfidfVectorizer on the training datavectors = tfv.fit_transform(traindata)for i, pagerank in enumerate(pageranks): feature_dict = {'pagerank': pagerank} # get ith row of the tfidf matrix (corresponding to sample) row = vect.getrow(i) # filter the feature names corresponding to the sample all_words = tfv.get_feature_names() words = [all_words[ind] for ind in row.indices] # associate each word (feature) with its corresponding score word_score = dict(zip(words, row.data)) # concatenate the word feature/score with the datamining feature/value X.append(dict(word_score.items() + feature_dict.items()))div.fit_transform(X) # training data based on both Tfidf features and pagerank