我有用于多类文本分类
的训练模型代码,并且它运行正常,但我无法使用该模型。这是我的训练代码
def training(df):
X = df.Text
y = df.Tags
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
lr = Pipeline([('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', LogisticRegression()),
])
lr.fit(X_train, y_train)
y_pred1 = lr.predict(X_test)
print(f"Accuracy is : {accuracy_score(y_pred1, y_test)}")
print(lr.predict('ماست کم چرب 900 گرمی رامک'))
当我运行代码时,得到了这样的结果 Accuracy is : 0.9957983193277311
以及以下错误
-
Traceback (most recent call last):File “E:\Python\NLP Project\Beta_00\Level0\handleClassification.py”, line 100, in training(df)
File “E:\Python\NLP Project\Beta_00\Level0\handleClassification.py”, line 85, in trainingprint(lr.predict(‘ماست کم چرب 900 گرمی رامک’))
File “E:\Python\NLP Project\Beta_00\venv\lib\site-packages\sklearn\utils\metaestimators.py”line 120, in out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs)
File “E:\Python\NLP Project\Beta_00\venv\lib\site-packages\sklearn\pipeline.py”, line 418, inpredictXt = transform.transform(Xt)
File “E:\Python\NLP Project\Beta_00\venv\lib\site-
packages\sklearn\feature_extraction\text.py”, line 1248, in transformraise ValueError(ValueError: Iterable over raw text documents expected, string object received.
回答:
以下几行需要更正:
lr.fit(X_train, y_train)
y_pred1 = lr.predict(X_test)
print(f"Accuracy is : {accuracy_score(y_test, y_pred1)}") #<--- 这里
print(lr.predict(['ماست کم چرب 900 گرمی رامک'])) #<--- 这里
行 lr.predict(input)
应该接收 ‘array’ 类型的输入。