我想在Python中实现KNN。到目前为止,我已经将数据加载到了Pandas DataFrame中。
import pandas as pdfrom sklearn.neighbors import KNeighborsClassifiertrain_df = pd.read_csv("creditlimit_train.csv") # 训练数据集train_df.head()
head的输出是
SNo Salary LoanAmt Level101 100000 10000 Low Level102 108500 11176 Low Level103 125500 13303 Low Level104 134000 14606 Low Level105 142500 15960 Low Leveltest_df = pd.read_csv("creditlimit_test.csv")test_df.head()
head的输出是
SNo Salary LoanAmt Level101 100000 10000 Low Level102 108500 11176 Low Level103 125500 13303 Low Level104 134000 14606 Low Level105 142500 15960 Low Levelneigh = KNeighborsClassifier(n_neighbors=5,algorithm='auto')predictor_features = ['Salary','LoanAmt']dependent_features = ['Level']neigh.fit(train_df[predictor_features],train_df[dependent_features])
我如何使用fit函数以薪资和贷款金额作为预测因子来预测我的test_df中的等级?
更新1:等级有三种:低、中、高
回答:
您可以将DataFrame转换为numpy数组并作为输入传递
# 将类别标签转换为数值数据,假设您有两个类别df['Level'].replace(['Low Level'],0)df['Level'].replace(['High Level'],1)# 提取数据和类别标签data = df[['Salary','LoanAmt']]target = df['Level']# 将df转换为numpy数组data = data.valuestarget = target.values# 理想情况下,您会想要进行测试训练分割。# 在训练数据上训练模型,并在测试数据上测试以获得准确性# 在fit函数中传递neigh = KNeighborsClassifier(n_neighbors=5,algorithm='auto')neigh.fit(data,target) ## 如何在这里传递参数?
一些有用的链接: