如何在Python中结合文本特征和分类特征?

我正在尝试构建一个管道来分别转换和编码文本和分类特征,并将它们结合起来输入到分类器中。我目前有一个用于选择数据的类如下:

class DataFrameSelector(BaseEstimator, TransformerMixin):    def __init__(self, attribute_names):        self.attribute_names = attribute_names    def fit(self, X, y=None):        return self    def transform(self, X):        print(X[self.attribute_names].head())        return X[self.attribute_names]

然后我使用它构建了一个结合了管道的FeatureUnion,如下所示:

preprocessing = FeatureUnion([    ("text_pipeline", Pipeline([        ("select_text", DataFrameSelector(text_features)),        ("count_vect", CountVectorizer()),        ("word_count_to_vector", TfidfTransformer()),    ])),    ("cat_pipeline", Pipeline([        ("select_cat", DataFrameSelector(cat_features)),        ("cat_encoder", OneHotEncoder(sparse=False)),    ])),])

当执行full_pipeline.fit_transform(X_train)时,我遇到了以下错误:

ValueError                                Traceback (most recent call last)<ipython-input-69-6927adc0ed62> in <module>()     22 ])     23 ---> 24 full_pipeline.fit_transform(X_train)/anaconda3/lib/python3.6/site-packages/sklearn/pipeline.py in fit_transform(self, X, y, **fit_params)    298         Xt, fit_params = self._fit(X, y, **fit_params)    299         if hasattr(last_step, 'fit_transform'):--> 300             return last_step.fit_transform(Xt, y, **fit_params)    301         elif last_step is None:    302             return Xt/anaconda3/lib/python3.6/site-packages/sklearn/pipeline.py in fit_transform(self, X, y, **fit_params)    798         self._update_transformer_list(transformers)    799         if any(sparse.issparse(f) for f in Xs):--> 800             Xs = sparse.hstack(Xs).tocsr()    801         else:    802             Xs = np.hstack(Xs)/anaconda3/lib/python3.6/site-packages/scipy/sparse/construct.py in hstack(blocks, format, dtype)    462     463     """--> 464     return bmat([blocks], format=format, dtype=dtype)    465     466 /anaconda3/lib/python3.6/site-packages/scipy/sparse/construct.py in bmat(blocks, format, dtype)    583                                                     exp=brow_lengths[i],    584                                                     got=A.shape[0]))--> 585                     raise ValueError(msg)    586     587                 if bcol_lengths[j] == 0:ValueError: blocks[0,:] has incompatible row dimensions. Got blocks[0,1].shape[0] == 1, expected 19634.

我无法找出我做错了什么。任何帮助都将不胜感激。


回答:

我通过使用scipy.sparse中的hstack来连接两个稀疏矩阵成功解决了这个问题。请看下面的代码:

from scipy.sparse import coo_matrix, hstackfrom sklearn.preprocessing import OneHotEncoderwith_prod_tfidf = text_pipeline.fit_transform(with_prod['Text'])#参考https://stackoverflow.com/questions/19710602/concatenate-sparse-matrices-in-python-using-scipy-numpywith_prod_all = hstack([with_prod_tfidf, OneHotEncoder().fit_transform(with_prod[cat_features])])print(with_prod_all.shape)

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注