我的损失函数如下:
loss = np.sum(np.square(A-B))
如何编写一个辅助函数来实现像Keras中的“提前停止”功能?
目的:
如果损失值上升或波动不大,则停止并获取A
和B
的值。
回答:
我查看了Keras的源代码,发现了提前停止的实现代码。我基于此创建了自己的回调函数:
class EarlyStoppingByLossVal(Callback): def __init__(self, monitor='val_loss', value=0.00001, verbose=0): super(Callback, self).__init__() self.monitor = monitor self.value = value self.verbose = verbose def on_epoch_end(self, epoch, logs={}): current = logs.get(self.monitor) if current is None: warnings.warn("Early stopping requires %s available!" % self.monitor, RuntimeWarning) if current < self.value: if self.verbose > 0: print("Epoch %05d: early stopping THR" % epoch) self.model.stop_training = True
使用方法如下:
callbacks = [ EarlyStoppingByLossVal(monitor='val_loss', value=0.00001, verbose=1), # EarlyStopping(monitor='val_loss', patience=2, verbose=0), ModelCheckpoint( kfold_weights_path, monitor='val_loss', save_best_only=True, verbose=0 )]model.fit( X_train.astype('float32'), Y_train, batch_size=batch_size, nb_epoch=nb_epoch, shuffle=True, verbose=1, validation_data=(X_valid, Y_valid), callbacks=callbacks)