我训练了一个XGB回归模型,现在我想输出MAPE得分,但我不确定如何操作。以下是我的代码:
from numpy import absolutefrom pandas import read_csvfrom sklearn.model_selection import cross_val_scorefrom sklearn.model_selection import RepeatedKFoldfrom xgboost import XGBRegressor# define modelmodel = XGBRegressor()# define model evaluation methodcv = RepeatedKFold(n_splits=10, n_repeats=3, random_state=1)# evaluate modelscores = cross_val_score(model, X, y, scoring='neg_mean_absolute_error', cv=cv, n_jobs=-1)
回答:
你可以使用以下两种方法之一:
from sklearn.metrics import mean_absolute_errormape = mean_absolute_error(Y_actual, Y_Predicted)*100
或者,
mape = np.mean(np.abs((Y_actual - Y_Predicted)/Y_actual))*100