如何在Keras中使用该模型拟合数组

def kerasModel(inp_shape, activation, n):    lstm_input = keras.layers.Input(shape=inp_shape, name='lstm_input')    x = keras.layers.LSTM(50, name='lstm_0')(lstm_input)    x = keras.layers.Dropout(0.2, name='lstm_dropout_0')(x)    x = keras.layers.Dense(64, name='dense_0')(x)    x = keras.layers.Activation('sigmoid', name='sigmoid_0')(x)    x = keras.layers.Dense(n, name='dense_1')(x)    output = keras.layers.Activation(activation, name='linear_output')(x)    model = keras.Model(inputs=lstm_input, outputs=output)        adam = keras.optimizers.Adam(lr=0.0005)    model.compile(optimizer=adam, loss='mse')        return modelmodelGeneral = kerasModel((4, 1), 'linear', 1)modelGeneral.fit(np.reshape(X_aux['X_i'], (1, 4, 1)), np.reshape(X_aux['X_i1'], (1, 4, 1)), verbose=False)

返回以下错误:

>>> modelGeneral.fit(np.reshape(X_aux['X_i'], (1, 4, 1)), np.reshape(X_aux['X_i1'], (1, 1, 4)), verbose=False)ValueError: Error when checking target: expected linear_output to have 2 dimensions, but got array with shape (1, 1, 4)
>>> modelGeneral.summary()_________________________________________________________________Layer (type)                 Output Shape              Param #   =================================================================lstm_input (InputLayer)      (None, 4, 1)              0         _________________________________________________________________lstm_0 (LSTM)                (None, 50)                10400     _________________________________________________________________lstm_dropout_0 (Dropout)     (None, 50)                0         _________________________________________________________________dense_0 (Dense)              (None, 64)                3264      _________________________________________________________________sigmoid_0 (Activation)       (None, 64)                0         _________________________________________________________________dense_1 (Dense)              (None, 1)                 65        _________________________________________________________________linear_output (Activation)   (None, 1)                 0         =================================================================Total params: 13,729Trainable params: 13,729Non-trainable params: 0_________________________________________________________________

我在linear_output之前尝试重塑数据,但返回了另一个错误:

>>> x = keras.layers.Reshape(inp_shape)(x)ValueError: total size of new array must be unchanged

我认为问题可能出在np.reshape(X_aux['X_i1'], (1, 1, 4))Y->fit()中,但说实话我已经迷失了方向,所以我非常需要一些帮助!!

np.reshape(X_aux['X_i1'], (1, 1, 4))的一个示例:

array([[[ 1.5357086 , 3.84368446, 3.84368446, 232. ]]])


回答:

LSTM层应返回序列:

x = keras.layers.LSTM(50, return_sequences=True, name='lstm_0')(lstm_input)

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注