我在使用CNN训练Fashion MNIST数据。由于过拟合,我尝试添加Dropout层,但它不起作用。
在添加Dropout之前,模型运行正常。
def fashion_model() batch_size = 64 epochs = 20 num_classes = 10 fashion_drop_model = Sequential() fashion_drop_model.add(Conv2D(32, kernel_size=(3, 3),activation='linear',padding='same',input_shape=(28,28,1))) fashion_drop_model.add(LeakyReLU(alpha=0.1)) fashion_drop_model.add(MaxPooling2D((2, 2),padding='same')) fashion_drop_model.add(Dropout(0.25)) fashion_drop_model.add(Conv2D(64, (3, 3), activation='linear',padding='same')) fashion_drop_model.add(LeakyReLU(alpha=0.1)) fashion_drop_model.add(MaxPooling2D(pool_size=(2, 2),padding='same')) fashion_drop_model.add(Dropout(0.25)) fashion_drop_model.add(Conv2D(128, (3, 3), activation='linear',padding='same')) fashion_drop_model.add(LeakyReLU(alpha=0.1)) fashion_drop_model.add(MaxPooling2D(pool_size=(2, 2),padding='same')) fashion_drop_model.add(Dropout(0.4)) fashion_drop_model.add(Flatten()) fashion_drop_model.add(Dense(128, activation='linear')) fashion_drop_model.add(LeakyReLU(alpha=0.1)) fashion_drop_model.add(Dropout(0.3)) fashion_drop_model.add(Dense(num_classes, activation='softmax')) return fashion_drop_model.summary()fashion_model()
我得到的错误是: UnboundLocalError: local variable 'a' referenced before assignment
附注:经过逐行代码的简要检查,我发现错误出现在第8行(fashion_drop_model.add(Dropout(0.25))
)。
回答:
你的Python函数定义中缺少一个冒号:
def fashion_model(): #<--
在你添加这个冒号后,代码应该可以运行。在Google Colaboratory中运行,你会看到模型的摘要:
注意
强烈不建议在卷积层之后使用Dropout层。卷积层的整个目的是利用空间邻域内的像素来提取正确的特征,以供全连接层使用。Dropout会破坏这种关系,从而阻止模型成功学习这些特征。
有关更多详情,请查看Reddit上的讨论: https://www.reddit.com/r/MachineLearning/comments/42nnpe/why_do_i_never_see_dropout_applied_in/