如何在CNN块上应用TimeDistributed层?

这是我的尝试:

inputs = Input(shape=(config.N_FRAMES_IN_SEQUENCE, config.IMAGE_H, config.IMAGE_W, config.N_CHANNELS))def cnn_model(inputs):    x = Conv2D(filters=32, kernel_size=(3,3), padding='same', activation='relu')(inputs)    x = MaxPooling2D(pool_size=(2, 2))(x)    x = Conv2D(filters=32, kernel_size=(3,3), padding='same', activation='relu')(x)    x = MaxPooling2D(pool_size=(2, 2))(x)    x = Conv2D(filters=64, kernel_size=(3,3), padding='same', activation='relu')(x)    x = MaxPooling2D(pool_size=(2, 2))(x)    x = Conv2D(filters=64, kernel_size=(3,3), padding='same', activation='relu')(x)    x = MaxPooling2D(pool_size=(2, 2))(x)    x = Conv2D(filters=128, kernel_size=(3,3), padding='same', activation='relu')(x)    x = MaxPooling2D(pool_size=(2, 2))(x)    return xx = TimeDistributed(cnn_model)(inputs)

这导致了以下错误:

AttributeError: 'function' object has no attribute 'built'

回答:

你需要使用Lambda层,并将你的函数包装在其中:

# cnn_model函数和你定义的一样...x = TimeDistributed(Lambda(cnn_model))(inputs)

或者,你可以将那个块定义为一个模型,然后在其上应用TimeDistributed层:

def cnn_model():    input_frame = Input(shape=(config.IMAGE_H, config.IMAGE_W, config.N_CHANNELS))    x = Conv2D(filters=32, kernel_size=(3,3), padding='same', activation='relu')(input_frame)    x = MaxPooling2D(pool_size=(2, 2))(x)    x = Conv2D(filters=32, kernel_size=(3,3), padding='same', activation='relu')(x)    x = MaxPooling2D(pool_size=(2, 2))(x)    x = Conv2D(filters=64, kernel_size=(3,3), padding='same', activation='relu')(x)    x = MaxPooling2D(pool_size=(2, 2))(x)    x = Conv2D(filters=64, kernel_size=(3,3), padding='same', activation='relu')(x)    x = MaxPooling2D(pool_size=(2, 2))(x)    x = Conv2D(filters=128, kernel_size=(3,3), padding='same', activation='relu')(x)    x = MaxPooling2D(pool_size=(2, 2))(x)    model = Model(input_frame, x)    return modelinputs = Input(shape=(config.N_FRAMES_IN_SEQUENCE, config.IMAGE_H, config.IMAGE_W, config.N_CHANNELS))x = TimeDistributed(cnn_model())(inputs)

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注