如何应用ConvLSTM层

我正在进行一个分类机器学习任务,输入形状为(700,50,34)(批次,时间步,长)

def convLSTM_model(X_train, y_train, X_test, y_test, num_classes,loss, batch_size=68, units=128, learning_rate=0.005,                           epochs=20, dropout=0.2, recurrent_dropout=0.2):    class myCallback(tf.keras.callbacks.Callback):        def on_epoch_end(self, epoch, logs={}):            if (logs.get('acc') > 0.9):                print("\n已达到90%准确率,取消训练!")                self.model.stop_training = True    callbacks = myCallback()    model = tf.keras.models.Sequential()    model.add(Masking(mask_value=0.0, input_shape=(None,X_train.shape[0],X_train.shape[1], X_train.shape[2])))        model.add(ConvLSTM2D(filters=40, kernel_size=(3, 3), padding="same", return_sequences=True))    model.add(BatchNormalization())    model.add(Bidirectional(LSTM(units, dropout=dropout, recurrent_dropout=recurrent_dropout, return_sequences=True)))    model.add(Bidirectional(LSTM(units, dropout=dropout, recurrent_dropout=recurrent_dropout, return_sequences=True)))    model.add(Bidirectional(LSTM(units, dropout=dropout, recurrent_dropout=recurrent_dropout)))    model.add(Dense(30, activation='relu'))    model.add(Dense(10, activation='relu'))    model.add(Dense(num_classes, activation='softmax'))    adamopt = tf.keras.optimizers.Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-8)    model.compile(loss=loss,                  optimizer=adamopt,                  metrics=['accuracy'])    history = model.fit(X_train, y_train,                        batch_size=batch_size,                        epochs=epochs,                        validation_data=(X_test, y_test),                        verbose=1,                        callbacks=[callbacks])    score, acc = model.evaluate(X_test, y_test,                                batch_size=batch_size)    yhat = model.predict(X_test)    return history, that

显然,仅仅更改input_shape并简单地添加

model.add(ConvLSTM2D(filters=40, kernel_size=(3, 3), padding="same", return_sequences=True))model.add(BatchNormalization())

是行不通的。

ValueError: 两个形状的维度1必须相等,但它们是708和501264。形状分别是[?,708,50,40]和[?,501264,2500,40]。对于'conv_lst_m2d/while/Select'(操作:'Select')的输入形状为:[?,501264,2500,40],[?,708,50,40],[?,708,50,40]。

我应该如何处理?关于滤波器的数量有什么建议吗?


回答:

试试这个,我认为CNN层应该在masking层之前实现。

    model = tf.keras.models.Sequential()        model.add(Conv1D(filters=32, kernel_size=8, strides=1, activation="relu", padding="same",input_shape=(X_train.shape[1], X_train.shape[2])))    model.add(MaxPooling1D(pool_size = 2))    model.add(Conv1D(filters=16, kernel_size=8, strides=1, activation="relu", padding="same"))    model.add(MaxPooling1D(pool_size = 2))            model.add(Masking(mask_value=0.0))    model.add(LSTM(units, dropout=dropout, recurrent_dropout=recurrent_dropout, return_sequences=True))    model.add(Bidirectional(LSTM(units, dropout=dropout, recurrent_dropout=recurrent_dropout, return_sequences=True)))    model.add(Bidirectional(LSTM(units, dropout=dropout, recurrent_dropout=recurrent_dropout, return_sequences=True)))    model.add(Bidirectional(LSTM(units, dropout=dropout, recurrent_dropout=recurrent_dropout)))    model.add(Dense(30, activation='relu'))    model.add(Dense(10, activation='relu'))        model.add(Dense(num_classes, activation='softmax'))

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注