我试图将一个一维信号(1,2000),它有22个特征(22,2000),输入到LSTM中。
(一维信号是通过200赫兹的采样率在10秒内获取的)
我有808个批次。(808, 22, 2000)
我看到LSTM接收的三维张量形状为(batch_size, timestep, input_dim)。
那么我的输入形状是否正确?
:(batch_size = 808, timestep = 2000, input_dim = 3)
这是我的代码示例。
# 数据形状检查
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
(727, 22, 2000)
(81, 22, 2000)
(727, 2)
(81, 2)
# 模型配置
inputshape = (808,2000,2) # 22个通道,2000个样本
lstm_1_cell_num = 20
lstm_2_cell_num = 20
inputdrop_ratio = 0.2
celldrop_ratio = 0.2
# 定义模型
model = Sequential()
model.add(LSTM(lstm_1_cell_num, input_shape=inputshape, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(20))
model.add(LSTM(lstm_2_cell_num, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(2, activation='sigmoid'))
print(model.summary())
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
回答:
首先,输入形状必须是(22,2000),批次大小应该在fit函数中给出。请尝试这样做
inputshape = (22,2000)
model.fit(X_train, y_train, batch_size=808, epochs=epochs, validation_data=(X_test,y_test), shuffle=True)