如何修复在Detectron2中DataLoader工作进程1中的TypeError错误

我在尝试使用COCO数据集训练Detectron2模型时遇到了问题。虽然我的数据集看起来加载正常,但在使用DefaultTrainer训练模型时,我收到了以下错误:

TypeError: Caught TypeError in DataLoader worker process 1.

这是我的设置:

from detectron2.engine import DefaultTrainer# TOTAL_NUM_IMAGES = 10531cfg = get_cfg()cfg.OUTPUT_DIR = os.path.join('./output')cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))cfg.DATASETS.TRAIN = ("my_dataset_train",)cfg.DATASETS.TEST = ()cfg.DATALOADER.NUM_WORKERS = 2cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")  # Let training initialize from model zoocfg.SOLVER.IMS_PER_BATCH = 2cfg.SOLVER.BASE_LR = 0.00025  # pick a good LR# single_iteration = cfg.SOLVER.IMS_PER_BATCH# iterations_for_one_epoch = TOTAL_NUM_IMAGES / single_iteration# cfg.SOLVER.MAX_ITER = int(iterations_for_one_epoch) * 20cfg.SOLVER.STEPS = []        # do not decay learning ratecfg.MODEL.ROI_HEADS.NUM_CLASSES = 1  # only has one class (person). (see https://detectron2.readthedocs.io/tutorials/datasets.html#update-the-config-for-new-datasets)# NOTE: this config means the number of classes, but a few popular unofficial tutorials incorrect uses num_classes+1 here.os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)trainer = DefaultTrainer(cfg) trainer.resume_or_load(resume=False)trainer.train()

在几次迭代后,我得到了这个错误:

[01/06 15:14:00 d2.utils.events]:  eta: 11:25:20  iter: 125  total_loss: 0.9023  loss_cls: 0.1827  loss_box_reg: 0.1385  loss_mask: 0.5601  loss_rpn_cls: 0.009945  loss_rpn_loc: 0.0023  time: 0.5232  data_time: 0.3085  lr: 3.1219e-05  max_mem: 3271M---------------------------------------------------------------------------TypeError                                 Traceback (most recent call last)<ipython-input-17-8c48e6e17647> in <module>()     26 trainer = DefaultTrainer(cfg)     27 trainer.resume_or_load(resume=False)---> 28 trainer.train()8 frames/usr/local/lib/python3.7/dist-packages/torch/_utils.py in reraise(self)    432             # instantiate since we don't know how to    433             raise RuntimeError(msg) from None--> 434         raise exception    435     436 TypeError: Caught TypeError in DataLoader worker process 1.Original Traceback (most recent call last):  File "/usr/local/lib/python3.7/dist-packages/torch/utils/data/_utils/worker.py", line 287, in _worker_loop    data = fetcher.fetch(index)  File "/usr/local/lib/python3.7/dist-packages/torch/utils/data/_utils/fetch.py", line 32, in fetch    data.append(next(self.dataset_iter))  File "/usr/local/lib/python3.7/dist-packages/detectron2/data/common.py", line 201, in __iter__    yield self.dataset[idx]  File "/usr/local/lib/python3.7/dist-packages/detectron2/data/common.py", line 90, in __getitem__    data = self._map_func(self._dataset[cur_idx])  File "/usr/local/lib/python3.7/dist-packages/detectron2/utils/serialize.py", line 26, in __call__    return self._obj(*args, **kwargs)  File "/usr/local/lib/python3.7/dist-packages/detectron2/data/dataset_mapper.py", line 189, in __call__    self._transform_annotations(dataset_dict, transforms, image_shape)  File "/usr/local/lib/python3.7/dist-packages/detectron2/data/dataset_mapper.py", line 128, in _transform_annotations    for obj in dataset_dict.pop("annotations")  File "/usr/local/lib/python3.7/dist-packages/detectron2/data/dataset_mapper.py", line 129, in <listcomp>    if obj.get("iscrowd", 0) == 0  File "/usr/local/lib/python3.7/dist-packages/detectron2/data/detection_utils.py", line 297, in transform_instance_annotations    p.reshape(-1) for p in transforms.apply_polygons(polygons)  File "/usr/local/lib/python3.7/dist-packages/fvcore/transforms/transform.py", line 297, in <lambda>    return lambda x: self._apply(x, name)  File "/usr/local/lib/python3.7/dist-packages/fvcore/transforms/transform.py", line 291, in _apply    x = getattr(t, meth)(x)  File "/usr/local/lib/python3.7/dist-packages/fvcore/transforms/transform.py", line 150, in apply_polygons    return [self.apply_coords(p) for p in polygons]  File "/usr/local/lib/python3.7/dist-packages/fvcore/transforms/transform.py", line 150, in <listcomp>    return [self.apply_coords(p) for p in polygons]  File "/usr/local/lib/python3.7/dist-packages/detectron2/data/transforms/transform.py", line 150, in apply_coords    coords[:, 0] = coords[:, 0] * (self.new_w * 1.0 / self.w)TypeError: can't multiply sequence by non-int of type 'float'

回答:

原来是”annotations”中的一些id是以科学记数法书写的,导致这些id的类型为浮点数。将这些id转换为整数后问题得到了解决。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注