如何修复TensorFlow中的ValueError:图形断开连接:无法获取张量的值?

当我使用tf.kears.layer函数式API构建我的实验模型时,我遇到了如下的GraphDisconnected错误:

ValueError Traceback (most recent call last)

in ()35 outputs = x36—> 37 model = tf.keras.Model(inputs=inputs, outputs=outputs)38 model.summary()

4 frames

/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/functional.pyin _map_graph_network(inputs, outputs)988 ‘The following previous layers ‘989 ‘were accessed without issue: ‘ +–> 990 str(layers_with_complete_input))991 for x in nest.flatten(node.outputs):992 computable_tensors.add(id(x))

ValueError: Graph disconnected: cannot obtain value for tensorTensor(“input_63:0″, shape=(?, 32, 32, 32), dtype=float32) at layer”tf_op_layer_Pow_105”. The following previous layers were accessedwithout issue: []

为了理解这个错误,我查看了可能的Stack Overflow帖子,但未能解决错误。我认为这是由于某些层之间的形状不匹配导致的。我仔细检查了每层的形状,但错误仍然存在。我不确定是什么引起了这个问题。有人能建议解决这个错误的可能方法吗?有什么快速解决方案吗?

更新:我的完整代码尝试

def my_func(x):    n = 2    c = tf.constant([1, -1/6], dtype=tf.float32)    p = tf.constant([1,3], dtype=tf.float32)    W,H, C = x.shape[1:].as_list()    inputs = tf.keras.Input(shape=(W,H,C))    xx = inputs    res = []    for i in range(n):        m = c[i] * tf.math.pow(xx, p[i])        res.append(m)    csum = tf.math.cumsum(res)    csum_tr = tf.transpose(csum, perm=[1, 2, 3, 4, 0])    new_x = tf.reshape(csum_tr, tf.constant([-1, W, H, C*n]))    return new_xinputs = tf.keras.Input(shape=(32,32,3))conv_1 = Conv2D(64, kernel_size = (3, 3), padding='same')(inputs)BN_1 = BatchNormalization(axis=-1)(conv_1)pool_1 = MaxPooling2D(strides=(1,1), pool_size=(3,3), padding='same')(BN_1)z0 = my_func(pool_1)conv_2 = Conv2D(64, kernel_size = (3, 3), padding='same')(z0)BN_2 = BatchNormalization(axis=-1)(conv_2)pool_2 = MaxPooling2D(strides=(1,1), pool_size=(3,3), padding='same')(BN_2)z1 = my_func(pool_2)merged_2 = concatenate([z0, z1], axis=-1)act_2 = Activation('tanh')(merged_2)x = Conv2D(64, kernel_size = (3, 3), padding='same', activation='relu')(act_2)x = BatchNormalization(axis=-1)(x)x = Activation('relu')(x)x = MaxPooling2D(pool_size=(3,3))(x)x = Dropout(0.1)(x)x = Flatten()(x)x = Dense(128)(x)x = BatchNormalization()(x)x = Activation('tanh')(x)x = Dropout(0.1)(x)x = Dense(10)(x)x = Activation('softmax')(x)outputs = xmodel = tf.keras.Model(inputs=inputs, outputs=outputs)model.summary()

谁能指出是什么导致了这个问题?我应该如何修复上面的图形断开连接错误?有什么快速的想法吗?谢谢!


回答:

这是编写自定义函数的正确方法… 没有必要使用额外的Input

def my_func(x):        n = 2    c = tf.constant([1, -1/6], dtype=tf.float32)    p = tf.constant([1,3], dtype=tf.float32)    W, H, C = x.shape[1:].as_list()    res = []    for i in range(n):        m = c[i] * tf.math.pow(x, p[i])        res.append(m)        csum = tf.math.cumsum(res)    csum_tr = tf.transpose(csum, perm=[1, 2, 3, 4, 0])    new_x = tf.reshape(csum_tr, tf.constant([-1, W, H, C*n]))        return new_x

你可以在网络中简单地使用Lambda层来应用它

inputs = tf.keras.Input(shape=(32,32,3))conv_1 = Conv2D(64, kernel_size = (3, 3), padding='same')(inputs)BN_1 = BatchNormalization(axis=-1)(conv_1)pool_1 = MaxPooling2D(strides=(1,1), pool_size=(3,3), padding='same')(BN_1)z0 = Lambda(my_func)(pool_1)  ## <=================conv_2 = Conv2D(64, kernel_size = (3, 3), padding='same')(z0)BN_2 = BatchNormalization(axis=-1)(conv_2)pool_2 = MaxPooling2D(strides=(1,1), pool_size=(3,3), padding='same')(BN_2)z1 = Lambda(my_func)(pool_2)  ## <=================merged_2 = concatenate([z0, z1], axis=-1)act_2 = Activation('tanh')(merged_2)x = Conv2D(64, kernel_size = (3, 3), padding='same', activation='relu')(act_2)x = BatchNormalization(axis=-1)(x)x = Activation('relu')(x)x = MaxPooling2D(pool_size=(3,3))(x)x = Dropout(0.1)(x)x = Flatten()(x)x = Dense(128)(x)x = BatchNormalization()(x)x = Activation('tanh')(x)x = Dropout(0.1)(x)x = Dense(10)(x)x = Activation('softmax')(x)outputs = xmodel = tf.keras.Model(inputs=inputs, outputs=outputs)model.summary()

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注