如何为线性回归定义目标变量

我想对一个尺寸为96×100的数据集进行回归分析。列表示天数(100天)的数值,而独立变量是时间。我的目标变量是多列的情况下,如何进行线性回归?样本数据集如下:

time    day1    day2    day3    day4    day5    day6    day7    day8    day9    day10   day11   day12   day13   day14   day15   day16   day17   day18   day19   day20   day21   day22   day23   day24   day25   day26   day27   day28   day29   day30   day31   day32   day33   day34   day35   day36   day37   day38   day39   day40   day41   day42   day43   day44   day45   day46   day47   day48   day49   day50   day51   day52   day53   day54   day55   day56   day57   day58   day59   day60   day61   day62   day63   day64   day65   day66   day57   day68   day69   day70   day71   day72   day73   day74   day75   day76   day77   day78   day79   day80   day81   day82   day83   day84   day85   day86   day87   day88   day89   day90   day91   day92   day93   day94   day95   day96   day97   day98   day99   day100500 6.07588E-10 6.13664E-10 5.89361E-10 5.95437E-10 6.31892E-10 6.37968E-10 5.83285E-10 6.01512E-10 5.83285E-10 6.1974E-10  3.03794E-09 -6.07588E-10    -2.43035E-09    1.21518E-09 2.43035E-09 6.07588E-10 6.07588E-10 -1.21518E-09    -1.21518E-09    0   3.03794E-09 1.82276E-09 -1.82276E-09    1.82276E-09 -2.43035E-09    -1.21518E-09    -1.21518E-09    -1.82276E-09    -1.21518E-09    2.43035E-09 1.82276E-09 -2.43035E-09    1.21518E-09 -6.07588E-10    -1.21518E-09    0   -1.21518E-09    1.21518E-09 -2.43035E-09    -2.43035E-09    3.03794E-09 -1.82276E-09    6.07588E-10 -1.82276E-09    3.03794E-09 -2.43035E-09    1.82276E-09 -1.82276E-09    0   0   1.82276E-09 -3.03794E-09    0   3.03794E-09 -1.21518E-09    -1.21518E-09    0   3.03794E-09 1.21518E-09 6.07588E-10 -3.03794E-09    1.21518E-09 3.03794E-09 0   6.07588E-10 -6.07588E-10    -6.07588E-10    1.82276E-09 -3.03794E-09    -1.21518E-09    1.21518E-09 1.82276E-09 1.82276E-09 2.43035E-09 3.03794E-09 1.21518E-09 1.21518E-09 -2.43035E-09    3.03794E-09 0   -1.21518E-09    -1.82276E-09    -1.82276E-09    1.82276E-09 -3.03794E-09    1.82276E-09 0   2.43035E-09 3.03794E-09 -2.43035E-09    -1.21518E-09    6.07588E-10 -1.21518E-09    6.07588E-10 3.03794E-09 0   -2.43035E-09    -1.21518E-09    -1.82276E-09    0515 6.07588E-10 5.89361E-10 6.07588E-10 6.01512E-10 6.25816E-10 6.07588E-10 6.1974E-10  6.37968E-10 5.77209E-10 5.95437E-10 1.82276E-09 -3.03794E-09    0   2.43035E-09 1.21518E-09 -3.03794E-09    -3.03794E-09    -1.82276E-09    2.43035E-09 0   1.82276E-09 3.03794E-09 2.43035E-09 6.07588E-10 1.21518E-09 -2.43035E-09    -6.07588E-10    -1.82276E-09    -1.21518E-09    -2.43035E-09    1.82276E-09 -1.21518E-09    6.07588E-10 6.07588E-10 0   6.07588E-10 3.03794E-09 -3.03794E-09    -1.21518E-09    -1.82276E-09    0   -3.03794E-09    1.21518E-09 -2.43035E-09    -2.43035E-09    -2.43035E-09    1.82276E-09 -1.82276E-09    6.07588E-10 -3.03794E-09    -6.07588E-10    -1.21518E-09    3.03794E-09 -1.82276E-09    -6.07588E-10    -1.21518E-09    1.82276E-09 3.03794E-09 -1.21518E-09    -6.07588E-10    -1.82276E-09    -2.43035E-09    -1.21518E-09    1.82276E-09 3.03794E-09 1.21518E-09 6.07588E-10 -1.82276E-09    2.43035E-09 -3.03794E-09    0   -2.43035E-09    -1.82276E-09    -3.03794E-09    3.03794E-09 3.03794E-09 3.03794E-09 -6.07588E-10    -6.07588E-10    -6.07588E-10    -2.43035E-09    -2.43035E-09    -1.82276E-09    -3.03794E-09    -1.21518E-09    -6.07588E-10    6.07588E-10 -3.03794E-09    -1.82276E-09    6.07588E-10 2.43035E-09 1.82276E-09 1.21518E-09 0   0   1.21518E-09 3.03794E-09 2.43035E-09 6.07588E-10 3.03794E-09530 6.07588E-10 6.01512E-10 6.1974E-10  6.13664E-10 5.95437E-10 6.31892E-10 6.01512E-10 5.77209E-10 6.13664E-10 6.25816E-10 1.82276E-09 2.43035E-09 1.82276E-09 -1.21518E-09    1.82276E-09 2.43035E-09 3.03794E-09 3.03794E-09 2.43035E-09 6.07588E-10 6.07588E-10 -6.07588E-10    2.43035E-09 0   1.82276E-09 6.07588E-10 0   3.03794E-09 -1.82276E-09    3.03794E-09 0   1.82276E-09 1.21518E-09 -2.43035E-09    -2.43035E-09    -3.03794E-09    1.21518E-09 -6.07588E-10    -1.82276E-09    2.43035E-09 3.03794E-09 -1.21518E-09    -6.07588E-10    6.07588E-10 2.43035E-09 0   -6.07588E-10    3.03794E-09 3.03794E-09 -1.82276E-09    3.03794E-09 1.82276E-09 6.07588E-10 0   -2.43035E-09    -3.03794E-09    -6.07588E-10    -2.43035E-09    -3.03794E-09    -1.21518E-09    1.82276E-09 6.07588E-10 3.03794E-09 6.07588E-10 0   3.03794E-09 2.43035E-09 0   -3.03794E-09    -3.03794E-09    1.21518E-09 -1.82276E-09    -3.03794E-09    0   -6.07588E-10    3.03794E-09 6.07588E-10 -2.43035E-09    -1.21518E-09    -2.43035E-09    -3.03794E-09    0   1.21518E-09 3.03794E-09 2.43035E-09 -1.82276E-09    -6.07588E-10    1.82276E-09 -2.43035E-09    1.21518E-09 1.21518E-09 -6.07588E-10    1.21518E-09 -3.03794E-09    -6.07588E-10    -2.43035E-09    -1.82276E-09    3.03794E-09 -2.43035E-09    3.03794E-09545 6.07588E-10 6.25816E-10 6.07588E-10 6.13664E-10 6.07588E-10 6.01512E-10 5.95437E-10 6.07588E-10 5.95437E-10 6.01512E-10 3.03794E-09 1.21518E-09 -1.82276E-09    -3.03794E-09    3.03794E-09 1.82276E-09 1.21518E-09 6.07588E-10 6.07588E-10 -1.82276E-09    -1.21518E-09    3.03794E-09 1.82276E-09 2.43035E-09 1.21518E-09 2.43035E-09 -1.82276E-09    2.43035E-09 -3.03794E-09    1.82276E-09 -2.43035E-09    -6.07588E-10    3.03794E-09 2.43035E-09 1.21518E-09 3.03794E-09 -3.03794E-09    0   -1.82276E-09    2.43035E-09 -1.21518E-09    6.07588E-10 1.82276E-09 1.21518E-09 1.21518E-09 -6.07588E-10    -1.21518E-09    -6.07588E-10    3.03794E-09 1.21518E-09 2.43035E-09 -1.21518E-09    0   1.82276E-09 -1.82276E-09    1.21518E-09 1.21518E-09 3.03794E-09 -6.07588E-10    -1.21518E-09    6.07588E-10 -6.07588E-10    6.07588E-10 1.82276E-09 -6.07588E-10    3.03794E-09 -1.82276E-09    1.21518E-09 -6.07588E-10    1.21518E-09 1.82276E-09 -2.43035E-09    -2.43035E-09    -6.07588E-10    -6.07588E-10    6.07588E-10 6.07588E-10 3.03794E-09 -6.07588E-10    1.21518E-09 -6.07588E-10    2.43035E-09 -2.43035E-09    -2.43035E-09    -2.43035E-09    -1.82276E-09    0   -1.82276E-09    -3.03794E-09    1.21518E-09 3.03794E-09 1.21518E-09 3.03794E-09 -1.21518E-09    -3.03794E-09    -6.07588E-10    -1.21518E-09    1.21518E-09 -2.43035E-09    -6.07588E-10
plt.scatter(reg.predict(X), reg.predict(X) - y,             color = "green", s = 10, label = 'Train data') 

回答:

你可以将时间设为因变量(标签),将不同日期的值设为模型的特征(独立变量)。你可以使用sklearn轻松地进行多层次回归:

from sklearn.linear_model import LinearRegressionX=np.array(df.drop("time",1))y=np.array(df["time"])clf=LinearRegression()clf.fit(X,y)

Related Posts

为什么我们在K-means聚类方法中使用kmeans.fit函数?

我在一个视频中使用K-means聚类技术,但我不明白为…

如何获取Keras中ImageDataGenerator的.flow_from_directory函数扫描的类名?

我想制作一个用户友好的GUI图像分类器,用户只需指向数…

如何查看每个词的tf-idf得分

我试图了解文档中每个词的tf-idf得分。然而,它只返…

如何修复 ‘ValueError: Found input variables with inconsistent numbers of samples: [32979, 21602]’?

我在制作一个用于情感分析的逻辑回归模型时遇到了这个问题…

如何向神经网络输入两个不同大小的输入?

我想向神经网络输入两个数据集。第一个数据集(元素)具有…

逻辑回归与机器学习有何关联

我们正在开会讨论聘请一位我们信任的顾问来做机器学习。一…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注