我需要为特定阈值设置一个数值并生成混淆矩阵。数据在一个csv文件中(11.1 MB),下载链接是:https://drive.google.com/file/d/1cQFp7HteaaL37CefsbMNuHqPzkINCVzs/view?usp=sharing?
首先,我收到一个错误消息:“”AttributeError: predict_proba is not available when probability=False“”因此,我使用以下方法进行修正:
svc = SVC(C=1e9,gamma= 1e-07)scv_calibrated = CalibratedClassifierCV(svc)svc_model = scv_calibrated.fit(X_train, y_train)
我在网上查了很多资料,但不太明白如何个性化设置特定阈值。这听起来相当困难。现在,我看到一个错误的输出:
array([[ 0, 0], [5359, 65]])
我不知道哪里出了问题。
我需要帮助,我在这方面是新手。谢谢
from sklearn.model_selection import train_test_splitdf = pd.read_csv('fraud_data.csv')X = df.iloc[:,:-1]y = df.iloc[:,-1]X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)def answer_four(): from sklearn.metrics import confusion_matrix from sklearn.svm import SVC from sklearn.calibration import CalibratedClassifierCV from sklearn.model_selection import train_test_split svc = SVC(C=1e9,gamma= 1e-07) scv_calibrated = CalibratedClassifierCV(svc) svc_model = scv_calibrated.fit(X_train, y_train) # 设置阈值为-220 y_pred = (svc_model.predict_proba(X_test)[:,1] >= -220) conf_matrix = confusion_matrix(y_pred, svc_model.predict(X_test)) return conf_matrixanswer_four()
这个函数应该返回一个混淆矩阵,一个包含4个整数的2×2 numpy数组。
回答:
这段代码产生了预期的输出,另外,在之前的代码中,我错误地使用了混淆矩阵,我还应该使用decision_function,并通过过滤220阈值来获取输出。
def answer_four(): from sklearn.metrics import confusion_matrix from sklearn.svm import SVC from sklearn.calibration import CalibratedClassifierCV from sklearn.model_selection import train_test_split #SVC未提及kernel,默认是rbf svc = SVC(C=1e9, gamma=1e-07).fit(X_train, y_train) #decision_function分数:预测样本的置信分数 y_score = svc.decision_function(X_test) #设置阈值-220 y_score = np.where(y_score > -220, 1, 0) conf_matrix = confusion_matrix(y_test, y_score)####阈值####在训练模型后在模型中输入阈值#阈值是类别分离的界限 return conf_matrixanswer_four()#输出: array([[5320, 24], [ 14, 66]])