如何为ELMO嵌入模型调整训练和测试集的正确维度

我在使用维度为x_tr=(43163, 50)和y_tr=(43163, 50, 1)的训练集拟合ELMO嵌入模型时遇到了错误,如下所示:

InvalidArgumentError: Incompatible shapes: [1600] vs. [32,50]     [[{{node metrics/acc/Equal}} = Equal[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](metrics/acc/Reshape, metrics/acc/Cast)]].

如何解决这个错误?

我尝试通过使训练样本可被批量大小整除来解决这个问题。

用于拟合模型的训练集:

X_tr=np.array(X_tr)print(X_tr.shape)y_tr = np.array(y_tr).reshape(len(y_tr), max_len, 1)print(y_tr.shape)(43163, 50)(43163, 50, 1)

构建模型:

input_text = Input(shape=(max_len,), dtype=tf.string)embedding = Lambda(ElmoEmbedding, output_shape=(None, 1024))(input_text)x = Bidirectional(LSTM(units=512, return_sequences=True,                       recurrent_dropout=0.2, dropout=0.2))(embedding)x_rnn = Bidirectional(LSTM(units=512, return_sequences=True,                           recurrent_dropout=0.2, dropout=0.2))(x)x = add([x, x_rnn])  # 残差连接到第一个双向LSTMout = TimeDistributed(Dense(n_tags, activation="softmax"))(x)model = Model(input_text, out)

编译模型:

model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])

拟合模型:

fit_model = model.fit(np.array(X_tr), np.array(y_tr).reshape(len(y_tr), max_len, 1), validation_split=0.1,                    batch_size=batch_size, epochs=5, verbose=1)

错误:

    InvalidArgumentError: Incompatible shapes: [1600] vs. [32,50]     [[{{node metrics/acc/Equal}} = Equal[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](metrics/acc/Reshape, metrics/acc/Cast)]]预期结果可能是:在38816个样本上训练,在4320个样本上验证Epoch 1/538816/38816 [==============================] - 433s 11ms/step - loss: 0.0625 - acc: 0.9818 - val_loss: 0.0459 - val_acc: 0.9858Epoch 2/538816/38816 [==============================] - 430s 11ms/step - loss: 0.0404 - acc: 0.9869 - val_loss: 0.0421 - val_acc: 0.9865Epoch 3/538816/38816 [==============================] - 429s 11ms/step - loss: 0.0334 - acc: 0.9886 - val_loss: 0.0426 - val_acc: 0.9868Epoch 4/538816/38816 [==============================] - 429s 11ms/step - loss: 0.0275 - acc: 0.9904 - val_loss: 0.0431 - val_acc: 0.9868Epoch 5/538816/38816 [==============================] - 430s 11ms/step - loss: 0.0227 - acc: 0.9920 - val_loss: 0.0461 - val_acc: 0.9867

回答:

已解决:我通过移除metrics=[‘accuracy’]解决了这个问题,但为什么这个准确率指标会导致错误我仍然不清楚。如果有人知道,请帮助我解答。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注